£í©÷¡¡£í©ø ¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ^C ¡É ¢º ¤º


MRD( 123.456444, 3) = 123.456
MRD( 123.44446, 3) = 123.444
MRD( 123.44446, 4) = 123.4445
rvStr =
// E1C3-ME-CAL-302_Design of Inner and Outer Tanks of C3 LPG Tank_Rev1.pdf
// POSCO E1 LPG TERMINAL PROJECT
¡¡4. TANK CAPACITY

4.1 Liquid Levels
DescriptionSymbolValueUnit
Design Liquid Level 2) HHLL =30600mm
Maximum Operation Level 1) HLL =30400mm
Minimum Operating Level LLL =1540mm
Pump Trip Level LLLL =1500mm
Shell Height = HLL + Sloshing Height + Margin HT =34000mm
Note
1) This liquid level should be used for seismic design and determination of sloshing height of inner steel tank.
2) It is the liquid level of maximum operation level plus overfill protection margin (= 200 mm).


4.2 Operating Tank Capacity
DescriptionSymbolValueUnit
Coefficient of thermal expansion for steel plate ¥á =1.15 x 10-5/¡ÆC
Operating temperature (Minimum) To =-41.5¡ÆC
Ambient temperature (Maximum) Ta =38¡ÆC
Temperature defference, ¥ÄT = Ta- To ¥ÄT =79.5¡ÆC
Cold diameter (Dcold)
¡¡Dcold = 54,000 ¡¿ [1 - (41.5 + 38) ¡¿ (1.15 ¡¿ 10-5)]
Dcold =53,951mm
Cold height (Hcold)
¡¡Hcold = 34,000 ¡¿ [1 - (41.5 + 38) ¡¿ (1.15 ¡¿ 10-5)]
Hcold =33,969mm
Maximum liquid capacity in operating condition (VCOLD)
¡¡Vcold = {¥ð¡¿Dcold©÷/ 4} ¡¿ ¥ÄH = (¥ð ¡¿ 53.9512©÷/ 4) ¡¿ 30.6
Vcold =69,954m©ø
in which,
¥ÄH = HHLL = 30,600 mm = 30.6 m HHLL =30.6m



// P10002-20-ME-EC-0003 Rev 0 [Inner Tank Sizing and Static Shell Design for LNG Storage Tanks].pdf
// »ï¼º¹°»ê ¿þ½î °è»ê¼­ - ÃÖÀå¿ì ÀÌ»ç
¡¡5. TANK CAPACITY CALCULATION

DescriptionSymbolValueUnit
Tank Diameter; D = 84.6m
Working Volume; VW = 180000m©ø
Coefficient of Thermal Contraction; ¥ÄL / L = 0.00173mm/mm
Volume Between LAH and LAHH 7000m©ø
A Min. Normal Operating Level (Including the shrinkage of pump column) A = 1.839m
B Max. Normal Operating Level (LAH) B = 32.136m
C Max. Allow Liquid Level (LAHH) C = 1.25m
D Freeboard D = 1.013m
Cold Diameter, D x ( 1 - ¥ÄL / L) DCOLD = 84.454m
Pump, Min. Normal Operating Level PML(warm)= 1.735m
Pump Column Length (warm), LPW = 40.664m
Pump Column Length (cold), LPC = 40.56m
The Shrinkage of Pump Column, LPW - LPC = 0.104m
Cold Height for Working Volume , B (VW + VD) = 32.136m
Dead Space Consisting of Internal Structure and Piping, VD = 20m©ø
Liquid height to Min. Normal Operating Level = A = 1.839m
Liquid height to Max. Normal Operating Level = A + B = 33.979m
Liquid height to LAHH A + B + C = 35.224m
Cold Height of Tank = A + B + C + D = 36.237m
Now need to calculate the slosh height of the liquid contents using API 620 : Appendix L : L.4.2.8 or L.4.3.2
Tc =secs
Ks =0.606
OBE (seismic constraints on design study ; 30140-20-GE-ER-002) Af_OBE =0.02OBE
SSE Af_CLE =0.027SSE
Freeboard OLE event ¥äs = 0.42DAf + hs Ds_OBE =1.013m
¥äs = 0.42DAf + 0 Ds_CBE =0.95m
Warm Height of Tank = m H_warm =36.299m
The additional height for the resilient blanket suspension system shall be considered (200mm) m H_tot =36.449m
INNER TANK SIZE = m dia x m high
//----------------------------------------------
// IHI-PTT-LNG
3. Bottom and Annular Plate

¡¡3.3 Bottom Plate Thickness
¡¡¡¡According to API 620 Q.3.5.7, the required minimum thickness of bottom plate is 3/16 inch (4.76 mm).
¡¡¡¡Therefore, the design bottom plate thickness 5.0 mm satisfies requirement.

¡¡3.4 Annular Plate Thickness
¡¡¡¡According to API 620 Q Table-Q4A, the required minimum thickness of annular bottom
¡¡¡¡plate is 21/32 inch (16.67 mm).
¡¡¡¡Therefore, nominal thickness of annular plate (16.7 mm) is greater than the required minimum thickness.

¡¡3.5 Annular Plate Width
¡¡¡¡According to API 620 Q.3.5.1, a required radial width of annular botlom plate is calculated
¡¡¡¡as follows;
¡¡
¡¡¡¡Lmin = Max [ 24in, ¡î390*tb / ¡îHG ] = 971 mm

¡¡¡¡Where,
¡¡¡¡¡¡Lmin = Required radial width of the annular plate [mm]
¡¡¡¡¡¡tb = Nominal thickness of the annular plate; 16.7 [mm]
¡¡¡¡¡¡H = Maximum design liquid level; 36.328 [m]
¡¡¡¡¡¡G = Design specific gravity of the liquid; 0.47 mm [mm]
¡¡¡¡¡¡Therefore, design radial width of annular plate 1770 mm mm satisfies required width.

//----------------------------------------------
// POSCO E1 LPG PROJECT
6. INNER TANK DESIGN

¡¡6.1 Bottom Plate
¡¡¡¡¡¡The minimum thickness of the bottom plates of the inner tank are designed in accordance with section 5.9.4 of API 620.
¡¡¡¡¡¡Minimum thickness of bottom plate (section 5.9.4 of API 620) tb,min = 1/4 in. = 6.35 mm
¡¡¡¡¡¡Corrosion allowance c = 1.5 mm
¡¡¡¡¡¡Thickness of bottom plate tb,min + c = 7.85 mm
¡¡¡¡¡¡Applied thickness of bottom plate tb = 8.00 mm
¡¡¡¡
¡¡6.2 Annular Bottom Plate
¡¡¡¡¡¡The thickness and width of the annular bottom plates for the inner tank are designed in accordance with API 620 Annex R.
¡¡¡¡¡¡Since the annular bottom plate is utilized to resist overturing from seismic forces,
¡¡¡¡¡¡the calculated size shall be also satisfied the requirements described in Sections E.6.2.1.1.2 and E.6.2.1.1.3 of API 650 Annex E.
¡¡¡¡¡¡The minimum requirements for thickness and length of annular bottom plate shall
¡¡¡¡¡¡be determined by the following formula and procedure;
¡¡¡¡
¡¡¡¡1) Minimum thickness
¡¡¡¡¡¡The minimum thickness of annular bottom plate shall be in accordance with API 620 Table R-6 for steel material.
¡¡¡¡¡¡Design stress in first shell course, [(2.6D) x (HG)]/t Sd = 20,933.98 lbf/in.2
¡¡¡¡¡¡Minimum thickness (from API 620 Table R-6) ta,min = 9/32 in. = 7.145 mm
¡¡¡¡¡¡Required minimum thickness (including corrosion allowance) ta,min = 8.645 mm
¡¡¡¡¡¡Applied nominal thickness of annular bottom plate ta = 12.0 mm
¡¡¡¡
¡¡¡¡2) Minimum width
¡¡¡¡¡¡The minimum width of annular bottom plate shall be calculated by the following equation in accordance with API 620 R.3.5.1.

¡¡¡¡¡¡Lmin = Max[ ¡î390tb / ¡îHG, 24 in] = 24.104 in + 612.15 mm
¡¡¡¡¡¡
¡¡¡¡¡¡in which,
¡¡¡¡¡¡¡¡tb is the nominal thickness of annular bottom plate (in.)
¡¡¡¡¡¡¡¡H is the design liquid height (ft)
¡¡¡¡¡¡¡¡G is the design specific gravity of the stored liquid

¡¡¡¡¡¡The minimum width of annular bottom plate for OBE and SSE levels shall be calculated by the
¡¡¡¡¡¡¡¡following equation in accordance with clause E.6.2.1.1.3 of API 650 Annex E as follows;
¡¡¡¡¡¡
¡¡¡¡¡¡L = 0.01723 * ta * ¡î Fy / (H * Ge ) [SI units] ¡¡L = 824.7 mm (OBE)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡L = 845.0 mm (SSE)
¡¡¡¡¡¡
¡¡¡¡¡¡Selected minimum width L = 1,350.0 mm
¡¡¡¡¡¡
¡¡¡¡¡¡Applied width of annular bottom plate ¡¡¡¡L = 1,415.0 mm (< 0.035D)
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡0.035D = 1,890 mm
¡¡¡¡¡¡
¡¡¡¡¡¡Also, the following requirements shall be satisfied;
¡¡¡¡¡¡¡¡Minimum distance from outside of the shell plate to the outer edge of the annular plate shall be 50 mm
¡¡¡¡¡¡¡¡Bottom plate shall be lapped on top of the annular plates. The minimum lap shall be 60 mm
¡¡¡¡¡¡¡¡Fig. 6.2-1 Width and Thickness of Inner Annular Bottom Plate

¡¡8. OUTER TANK DESIGN

¡¡8.1 Bottom and Annular Plate
¡¡
¡¡¡¡¡¡The thickness of bottom plate shall be determined by the following minimum thickness conditions.
¡¡
¡¡¡¡¡¡Minimum thickness of bottom plate (as per 5.9.4.2 of API 620) tb,min = 1/4 in.¡¡= 6.35 mm
¡¡¡¡¡¡Minimum thickness of bottom plate (as per R.3.9.2 of API 620) tb,min = 3/16 in.
¡¡¡¡¡¡¡¡(for warm vapor and purge containers) = 4.7625 mm
¡¡
¡¡¡¡¡¡Required minimum nominal thickness of bottom plate tb,min + c = 6.2625 mm
¡¡¡¡¡¡Corrosion allowance c = 1.5 mm
¡¡¡¡¡¡Applied thickness of bottom plate tb = 7.0 mm
¡¡¡¡¡¡The minimum thickness of annular plate shall be in accordance with API 620 Table R-6 for steel material.
¡¡
¡¡¡¡¡¡Minimum thickness (from API 620 Table R-6) ta,min = 1/4 in.= 6.35 mm
¡¡¡¡¡¡Applied thickness of annular plate (incl. corrosion allowance) ta,min = 10.0 mm
¡¡¡¡¡¡The minimum width of annular plate shall be calculated by the following equation
¡¡¡¡¡¡in accordance with API 620 R.3.5.1. min max * t ¡î( )( ) in + in mm
¡¡
¡¡¡¡¡¡in which,
¡¡¡¡¡¡¡¡tb is the nominal thickness of annular bottom plate (in.)
¡¡¡¡¡¡¡¡H is the design liquid height (ft)
¡¡¡¡¡¡¡¡G is the design specific gravity of the stored liquid
¡¡¡¡¡¡¡¡Also, the following requirements shall be satisfied;

Table 3-1 Inner shell thickness calculation
Course
No.
Shell width
W[mm]
Operating ConditionHydrostatic-Test ConditionUsed
Thickness
[mm]
JURGEWeight
[Ton]
Static Head
Diagram
Height
Hd
[m]
Pressure
Pd
[mm]
Thickness
td
[mm]
Height
Ht
[m]
Pressure
Pt
[mm]
Thickness
tt
[mm]
940353.6630.016882.870.0000.000000.0010.00OK77.620
840357.6980.035486.020.0000.000000.0010.00OK77.620
7403511.7330.054089.180.0000.000000.0010.00OK77.620
6403515.7680.0726812.330.7830.007680.8812.40OK96.250
5403519.8030.0912715.494.8180.047255.4215.50OK120.314
4403523.8380.1098718.658.8530.086829.9618.70OK145.155
3416428.0020.1290621.9013.0170.1276514.6522.00OK176.233
2416432.1660.1482625.1617.1810.1684919.3325.20OK201.869
1416236.3280.1674428.4221.3430.2093024.0228.50OK228.198
SUM36700mm1200.879
Table Q-5 Nominal Thickness of Primary and Secondary Liquid Container Cylindrical Sidewall Plates
Stainless steel and nickel steel
USCSI UNITThis Tank
Diameter
Nominal Cylinder DiameterNominal Plate ThicknessNominal Cylinder DiameterNominal Plate Thickness
D (ft)ts.Min (in) D (m)ts.Min(mm) D (ft, m)
60 < D3/1618.288 < D4.76
60 ¡Â D ¡Ã 1401/4 18.288 ¡Â D ¡Ã 426726.35
140 < D ¡Ã 220 5/1642.672 < D ¡Ã 67.056 7.94
220 < D 3/18 67.056 < D 9.53255.906 (ft)
78 (m)


Where
Height from the botlom of the course under consideration
to the Max. design liquid level
Hd =AVOBE TABLEm
Static liquid pressure, Pd = ¥ñ ¡¿ g ¡¿ Hd¡¿10-6 Pd =AVOBE TABLEMPA
Calculated minimum shell plate thickness td =AVOBE TABLEmm
Gravity acceleration; 9.80665 g =9.80665m/s2
Diameter of inner tankD =78000mm
Radius of inner tankR =39000mm
LNG density; ¥ñ =470 kg/m©ø
Specific Gravity Gd =0.471
Allowable design stress; 229.8 Sd =229.8MPa
Joint efficiency (API 620 Table 5-2 for butt joint, double welding, full RT)E =1.0MPa
Corrosion allowanceC =0.0mm



5. [INNER TANK] Top Girder calculation
Refer to Guide to STORAGE TANK & EQUIPMENT
The David Taylor model basin Formula is used to decide upon the pitching of the stiffeners on the tank shell.
This is taken from the work of Windenburg and Trilling (Reference 18.4), some of which is based on test work
carried out on behalf of the US Navy as far back as 1929.

¡¡5-1) The number of stiffeners required to stabilise the shell is given by : (equ. 18. 11)

¡¡¡¡Ns = (He / Ls) - 1 = (19977 / 5664) - 1 = 2.53,¡¡Ns¡¡= 3 EA

¡¡5-2) Total height of equivalent tank shell ( He = ¥ÒWtr ) (equ. 18. 10) TABLE 5.1

   
No.Unit : [mm]
tnWtuniformtactualWtr
910.00403510.010.04035.0
810.00403510.010.04035.0
710.00403510.010.04035.0
612.40403510.012.42356.6
515.50403510.015.51349.0
418.70403510.018.7843.8
322.00416410.022.0580.0
225.20416410.025.2413.1
128.50416210.028.5303.5
SUM36700mm He =18.0 m
Ai[0] = 0.133g, Ac[0] = 0.005g , Av[0] = 0.087g
Ai[0] = 0.224g, Ac[0] = 0.014g , Av[0] = 0.224g
H = 35.811 m,
WT = 786209 kN,
Wi = 399342 kN, Xi = 13.429 mm
Wc = 368840 kN, Xc = 21.207 mm
Ws = 15722 kN
Wf = 2306 kN
Table 4-6 Anchorage Ratio Calculation
SymbolValueUnit
(J ¡Â O.785) ¥òc = 7.5739MPa
B·P
0.2K£­0.6·P32

A·P·R
S·E £­ 0.6·P
(J > O.785) ¥òc = 11.9925 ???
D = 78.0m ???
H = 35.811m ???
Ho = 0.0m ???
Wt = Ws / ¥ð*D64159.85N/m ???
Fy =586.10MPa ???
tb =16.70mm ???
SymbolOLECLEUnit
Ai = 0.1330.224g
Ac = 0.0050.014g
Av = 0.0870.224g
Ge = G(1 - 0.3*Av)0.45360.4279 ???
Wa = 99*tb*SQRT(Fy*H*Ge)161326156679 ???
J = 0.5250.916 ???
Check J valueJ ¡Â 0.75J ¡Â 1.54
Mechnical Anchor Required ? Not NecessoryNot Necessory ???

API 650 Annex E (Table E-6) Anchorage Ratio Criteria
J ¡Â 0.785No calculated uplift under the design seismic overturning moment.
The tank is self-anchored.
N/A
0.785 < J ¡Â 1.54Tank is uplifting, but the tank is stable for the design load providing the shell compression. requirements are satisfied. Tank is self-anchored.N/A
J > 1.54Tank is not stable and cannot be self-anchored for the design load. Modify the annular ring if L < 0.035D is not controlling or add mechanical anchorage.

¡Û

As the results, the mechanically-anchored system shall be applied to protect
the inner shell tank from overturning due to seismic load for OBE and SSE events.

IHI PTT-LNG 4.5 Compressive Stress on Shell Plate
¡¡(c) Calculation result
¡¡¡¡The following table shows the results.
DescriptionSymbolOLECLEUnit
G*H*D2 / ts2 = ÆǴܼö½Ä126.1 > 44 126.1 > 44
Maximum longitudinal
shell compression stress
¥òc =7.612MPa
Allowable Compressive StressFc =30.330.3MPa
¥òc < Fc then, OKJURDEOKOK


E1 Table 6.4-4 Summary of Main Parameters for Calculation of Overturning Moments
DescritionSymbolUnit : kN, mUnit : Ton, mm
Total weight of tank shell and shell attachmentWs8706.42kN8706.42kN
Total weight of Contents Weight Wp397505.35kN397505.35kN
Effective weight of insulation acting on the shellWnskNkN
Effective impulsive portion of the liquid weightWi235624.24kN235624.24kN
Effective convective (sloshing) portion of the liquid weightWc157271.62kN157271.62kN
Total weight of tank shell, roof, framing, product, bottom, attachments, appurtenancesWT799107.63799107.63
Height from the bottom of the tank shell to the center of action of the lateral seismic force related to the impulsive liquid force for ringwall momentXi11.4m11.4m
Height from the bottom of the tank shell to the center of action of lateral seismic force related to the convective liquid force for ringwall momentXc18.99m18.99m
Height from the bottom of the tank shell to the shell's center of gravityXs12.76m12.76m
Height from base of shell to center action of the insulation load on tank shellXns17m17m
Height from the bottom of the tank shell to the roof and roof appurtenances center of gravityXrmm


Table 4-X Weight List
WightWs [kN]Wf [kN]Wi [kN]Wc [kN]WT [kN]
Weight (kN)157222306399342368840786209
Weight (Ton)160322351407215376112801710


Table 4-6 Overturning moment and base share
SEISMIC
LEVEL
Base Shear
at Impulsive
Vi [kN]
Base Shear
at Convective
Vc [kN]
Total
Base shaer
V [kN]
Overturning
moment
Mrw [N-m]
OBE55510184455541714325
CLE934915164936331206250


6.4.8 Sliding Resistance
¡¡The total lateral shear force at inner tank base by seismic force shall not exceed the friction force
¡¡¡¡between the tank base and base insulation. The lateral seismic shear force is defined
¡¡¡¡as the SRSS combination of impulsive and convective components in accordance with API 650 Annex E.
¡¡1) Overall Lateral Shear Forces
¡¡¡¡Base shear force due to impulsive components can be calculated in accordance
¡¡¡¡with API 620 Annex L; L.3.3 as follows and the corresponding effective weights
¡¡¡¡are same as shown in Table 7.3-1.
¡¡Vi = Ai (Ws + Wr + Wf + Wi + Wns + Wnr) Vi = 55,972.95 kN (OBE)
¡¡Vi = 54,990.97 kN (SSE)
¡¡Base shear force due to convective component is calculated as follows;
¡¡Vc = Ac x Wc Vc = 4,984.93 kN (OBE)
¡¡Vc = 8,415.94 kN (SSE)
¡¡Lateral shear force (V) (API 650 Annex E; E.7.6)
¡¡V ¡îVi V V = 56,194.49 kN (OBE)
¡¡V = 55,631.24 kN (SSE)
¡¡2) Sliding Capacity
¡¡¡¡Friction coefficient for carbon steel on sand ¥ì 20
¡¡¡¡Maximum coefficient of friction (API 620 Annex L)
¡¡¡¡¥ìmax = tan30¡Æ/1.5 = 0.385 (OBE)
¡¡¡¡¥ìmax = tan30¡Æ = 0.577 (SSE)
¡¡The minimum friction coefficient among the above coefficients
¡¡¡¡should be used for the calculation of friction force.
¡¡The selected friction coefficient is 0.32.
¡¡¡¡Friction force (Vs)


6.4.9 Local Shear Transfer
¡¡Local shear transfer from inner shell to the base shall be calculated
¡¡in accordance with Equation (E.7.7-1) in API 650 Annex E as follows;
¡¡Tangential shear per unit length, Vmax = 2V / ( x D) Vmax = 661.40 kN/m (OBE)
¡¡Vmax = 654.77 kN/m (SSE)
¡¡Specified minimum yield stress ¥òY = 344.74 MPa
¡¡Shear stress in weld of bottom plate (fa = 0.8 x ¥òY) fa = 0.8 x 344.74 = 257.79 MPa
¡¡Thickness of lowest shell plate (less corrosion allowance) t = 32.6 mm
¡¡Shear stress in bottom plate (fmax = Vmax / t) fmax = 20.322 MPa (OBE)
¡¡fmax = 20.118 MPa (SSE)
¡¡Since, shear stress (fmax) < shear stress in weld (fa) Satisfactory
Table 4-2 Distribution of hoop stress for OLE seismic load
Course
No.
Shell thick.
t[mm]
Shell width
W[mm]
Height
Y[m]
Product hydrostatic
membrane force
Nh [N/mm]
Impulsive hoop
membrane force
Ni [N/mm]
Convective hoop
membrane force
Nc [N/mm]
Vertical seismic
membrane force
Av·Nh/2.5 [N/mm]
Combined
Hoop stress
¥òT [MPa]
Allowable
Stress
¥òallow [MPa]
Stress Ratio
¥òT / ¥òallow
JURGE
¥òT < ¥òallow
[mm][mm][m][N/mm]¥òT [MPa]¥òallow [MPa]SR SR < 1.0 OK
910.040353.146565.51, 593.38118.77, 124.3523.06, 22.9119.68, 51.6373.0 / 68.8399.80.239OK
810.040357.1811290.83, 1290.83255.13, 255.1419.45, 19.4644.92, 112.31157.1 / 155.10.514OK
710.0403511.2162016.14, 2044.01373.54, 377.7316.55, 16.4570.16, 177.83246.2 / 239.70.806OK
612.4403515.2512741.46, 2741.46473.99, 474.0014.25, 14.2595.40, 238.51263.9 / 260.10.864OK
515.5403519.2863466.77, 3494.64556.49, 559.3112.46, 12.41120.64, 304.04266.6 / 260.40.872OK
418.7403523.3214192.09, 4192.09621.04, 621.0511.13, 11.14145.88, 364.72262.7 / 258.30.860OK
322.0416427.4854940.59, 4940.60668.83, 668.8310.18, 10.19171.93, 429.84260.8 / 256.00.853OK
225.2416431.6495689.09, 5689.10697.50, 697.509.63, 9.63197.98, 494.96259.7 / 254.50.850OK
128.5416235.8116437.24, 6437.24707.05, 707.059.44, 9.45224.02, 560.04257.6 / 251.90.843OK

Table 4-3 Total hoop stress on shell plate for OLE seismic load
Course
No.
Shell thick.
t [mm]
Total combined
hoop stress
¥òT [MPa]
Allowable Stress
¥òallow [MPa]
Hoop Stress Ratio
¥òT / ¥òallow
JURGE
¥òT < ¥òallow
910.073.0 / 68.8399.80.239OK
810.0157.1 / 155.1399.80.514OK
710.0246.2 / 239.7399.80.806OK
612.4263.9 / 260.1399.80.864OK
515.5266.6 / 260.4399.80.872OK
418.7262.7 / 258.3399.80.860OK
322.0260.8 / 256.0399.80.853OK
225.2259.7 / 254.5399.80.850OK
128.5257.6 / 251.9399.80.843OK

Table 4-4 Distribution of hoop stress for CLE seismic load
Course
No.
Shell thick.
t[mm]
Shell width
W[mm]
Height
Y[m]
Product hydrostatic
membrane force
Nh [N/mm]
Impulsive hoop
membrane force
Ni [N/mm]
Convective hoop
membrane force
Nc [N/mm]
Vertical seismic
membrane force
Av·Nh/2.5 [N/mm]
Combined
Hoop stress
¥òT [MPa]
Allowable
Stress
¥òallow [MPa]
Stress Ratio
¥òT / ¥òallow
JURGE
¥òT < ¥òallow
[mm][mm][m][N/mm]¥òT [MPa]¥òallow [MPa]SR SR < 1.0 OK
910.040353.146565.51, 593.38200.04, 209.9264.57, 64.1550.67, 132.9285.0 / 78.2399.80.213OK
810.040357.1811290.83, 1290.83429.69, 429.7054.46, 54.47115.66, 289.15181.2 / 173.90.453OK
710.0403511.2162016.14, 2044.01629.12, 636.1846.33, 46.06180.65, 457.86283.0 / 267.20.708OK
612.4403515.2512741.46, 2741.46798.30, 798.3139.89, 39.89245.63, 614.09302.4 / 288.50.756OK
515.5403519.2863466.77, 3494.64937.25, 941.9934.89, 34.73310.62, 782.80304.6 / 287.40.762OK
418.7403523.3214192.09, 4192.091045.96, 1045.9731.17, 31.17375.61, 939.03299.4 / 283.60.749OK
322.0416427.4854940.59, 4940.601126.45, 1126.4528.51, 28.51442.68, 1106.70296.4 / 279.60.741OK
225.2416431.6495689.09, 5689.101174.73, 1174.7426.95, 26.96509.74, 1274.36294.6 / 276.60.737OK
128.5416235.8116437.24, 6437.241190.82, 1190.8226.44, 26.45576.78, 1441.95291.5 / 272.30.729OK

Table 4-5 Total hoop stress on shell plate for CLE seismic load
Course
No.
Shell thick.
t [mm]
Total combined
hoop stress
¥òT [MPa]
Allowable Stress
¥òallow [MPa]
Hoop Stress Ratio
¥òT / ¥òallow
JURGE
¥òT < ¥òallow
910.085.0 / 78.2399.80.213OK
810.0181.2 / 173.9399.80.453OK
710.0283.0 / 267.2399.80.708OK
612.4302.4 / 288.5399.80.756OK
515.5304.6 / 287.4399.80.762OK
418.7299.4 / 283.6399.80.749OK
322.0296.4 / 279.6399.80.741OK
225.2294.6 / 276.6399.80.737OK
128.5291.5 / 272.3399.80.729OK


¹«±â ¾ÆÀÌÅÛ ¸ñ·Ï
  1. ÁöÆÎÀÌ
  2. µµ°Ë
  3. µÐ±â
  4. ´Ü°Ë
  5. µµ³¢
  6. È°
  7. ÃÑ
¹«±â ¾ÆÀÌÅÛ ¸ñ·Ï
  1. ÁöÆÎÀÌ
  2. µµ°Ë
  3. µÐ±â
  4. ´Ü°Ë
  5. µµ³¢
  6. È°
  7. ÃÑ
¹«±â ¾ÆÀÌÅÛ ¸ñ·Ï
  1. ÁöÆÎÀÌ
  2. µµ°Ë
  3. µÐ±â
  4. ´Ü°Ë
  5. µµ³¢
  6. È°
  7. ÃÑ
¹«±â ¾ÆÀÌÅÛ ¸ñ·Ï
  1. ÁöÆÎÀÌ
  2. µµ°Ë
  3. µÐ±â
  4. ´Ü°Ë
  5. µµ³¢
  6. È°
  7. ÃÑ
¹«±â ¾ÆÀÌÅÛ ¸ñ·Ï (¿¹Á¦ start="3")
  1. ÁöÆÎÀÌ
  2. µµ°Ë
  3. µÐ±â
  4. ´Ü°Ë
  5. µµ³¢
  6. È°
  7. ÃÑ
Á¤ÀÇ ¸ñ·Ï Á¦¸ñ 1
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-1
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-2
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-3
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-4
Á¤ÀÇ ¸ñ·Ï ³»¿ë 1-5 POSCO E1 DESIGN DATA
NoItems Inner Tank Outer Tank
1Diameter of Tank54.0 m56.0 m
2Height of Tank34.0 m36.0 m
3Design Allowable Boil-off Rate0.06 wt% of Storage Capacity per Day
4MaterialASTM A537 CL.1ASTM A516 Gr. 60 & 70
5Design Temperature-45 / 70¡ÆC70¡ÆC
6Operating Temperature-41.5¡ÆC38¡ÆC
7Minimum Design Metal Temperature-45¡ÆC-18¡ÆC
8Design Wind Speed-53 m/s
9Density of Product582 kg/m3-
10Design Pressure
11Internal Design Pressure20 kPa
12External Design Pressure-0.5 kPa
13Operating PressureLiquid Head10 kPa
14Hydrostatic Test Level30.6 m-
15Pneumatic Test Pressure1)25 kPa
16Spectral Acceleration
17Horizontal AccelerationOBE : 0.0627g, SSE : 0.154g
18Vertical Acceleration2)OBE : 0.0418g, SSE : 0.1027g
19Imposed Load-120 kg/m2
20Snow Load-120 kg/m2
21Corrosion Allowance1.5 mm1.5 mm
22Joint Efficiency
23Shell Plate10.7
24Bottom and Roof PlatesAs per Table 5-2 of API 620


Á¤ÀÇ ¸ñ·Ï ³»¿ë 1-2
Á¤ÀÇ ¸ñ·Ï Á¦¸ñ 2
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-1
Á¤ÀÇ ¸ñ·Ï Á¦¸ñ 2
Á¤ÀÇ ¸ñ·Ï ³»¿ë 2-1
  1. first item
  2. second item
    1. second item first subitem
    2. second item second subitem
    3. second item third subitem
  3. third item
POSCO E1 DESIGN DATA
NoItems Inner Tank Outer Tank
1Diameter of Tank54.0 m56.0 m
2Height of Tank34.0 m36.0 m
3Design Allowable Boil-off Rate0.06 wt% of Storage Capacity per Day
4MaterialASTM A537 CL.1ASTM A516 Gr. 60 & 70
5Design Temperature-45 / 70¡ÆC70¡ÆC
6Operating Temperature-41.5¡ÆC38¡ÆC
7Minimum Design Metal Temperature-45¡ÆC-18¡ÆC
8Design Wind Speed-53 m/s
9Density of Product582 kg/m3-
10Design Pressure
11Internal Design Pressure20 kPa
12External Design Pressure-0.5 kPa
13Operating PressureLiquid Head10 kPa
14Hydrostatic Test Level30.6 m-
15Pneumatic Test Pressure1)25 kPa
16Spectral Acceleration
17Horizontal AccelerationOBE : 0.0627g, SSE : 0.154g
18Vertical Acceleration2)OBE : 0.0418g, SSE : 0.1027g
19Imposed Load-120 kg/m2
20Snow Load-120 kg/m2
21Corrosion Allowance1.5 mm1.5 mm
22Joint Efficiency
23Shell Plate10.7
24Bottom and Roof PlatesAs per Table 5-2 of API 620


IHI-PTTLNG E1 DESIGN DATA
1. SCOPE
This document covers the design calculation for inner tank on operating, testing and
seismic condition for LNG storage tanks.
2. APPLlCABLE STANDARD
The following tank design data and material property are applicable for the design
calculation for inner tank.

2.1 Design Data
Table 2~1 Tank design data
NoItems Inner Tank Outer Tank
NoDesign codeAPI 620 11 th edition (2008)
1Addendum 1 (2009)
2Addendum 2 (2010)
3Addendum 3 (2012)
4Tank typeFull Containment Tank, Elevated
5Bottom slab
6Metal Inner Tank with Suspended
7Deck and Concrete Outer Tank
8Service LNG
9Net working capacity160,000 m3
10Inner tank shell height at ambient temperature36,700 mm
11Liquid Maximum design liquid level36,328 mm
12level Normal maximum operating level35,811 mm
13Normal minimum operating level2,200 mm
14Pump trip level2,000 mm
15Hydrostatic te5t level21,343 mm
16LNG design density470 kg/m3
17Inner tank operating temperature~175 oC
18Maximum ambient temperature40 0C
19Corrosion allowanceOmm


¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ^C ¡É ¢º ¤º




17 8 of 28 4. SEISMIC CALCULATION 4.1 Calculation of Sloshing Wave Height According to API 620 L 4.2.8 and L 4.3.2 sloshing wave height is calculated as follows; ¥ä_OLD = 0.42 ¡¿ Do ¡¿ Af = 164 [mm] for OLE ¥ä_CLE = 0.42 ¡¿ Do ¡¿ Af = 458 [mm] for OLE Where, ¥ä = Sloshing wave height [mm] Af = Horizontal response acceleration for sloshing mode; Af = 0.005 [g] for OLE Af = 0.014 [g] for CLE Do = Inner tank diameter at operating temperature = Da ¡¿ {1 - ¥á(Ta - To)} = 77,854 [mm] Da = Inner tank diameter at ambient temperature; 78,000 [mm] ¥á = Coefficient of linear expansion; 9.2 ¡¿ 10.6 [/¡É] Ta = Ambient temperature; 40 [¡É] To = Operating temperature; -164 [¡É] The height of inner tank shell shall have freeboard for the normal maximum operating level not to overflow by sloshing of liquid content. Therefore the required minimum shell height at seismic can be calculated by following expression. ¢º For OLE condition "H:Normal maximum operating level" + ¡°¥ä:Sloshing Wave Height" + 300 ¥ä OLE = 35,811 + 164 + 300 = 36,275 [mm] < Ho = 36,631 [mm] ..... OK ¢º For CLE condition "H:Normal maximum operatina level" + "¥ä:Sloshina Wave Heiaht" + 300 ¥ä CLE = 35.811 + 458 + 300 = 36.569 [mm] < Ho = 36.631 fmml ..... OK Ha = Tank height at ambient temperature; 36,700 [mm] Ho = Tank height at operating temperature Ho = Ha ¡¿ {1 - ¥á(Ta - To)} = 36,631 [mm]

17 9 of 28 4.2 Hoop Stress of Each Course on Tank Shell Plate (a) Method According to API 650 E6.1 .4, total combined hoop stress in tank shell St N/mm2 is calculated as follows; £« £­ ¡¿ ¡À ¡¾ ¤º©÷©ø©ù©ü©ý©þ ¥òt = Nh ¡¾ SQRT [ Ni©÷+ Nc©÷+ (Av ¡¿ Nh)©÷] / t Where, Nh = Product hydrostatic membrane force [N/mm] Ni = Impulsive hoop membrane force in tank shell [N/mm] Nc = Convective hoop membrane force in tank shell [N/mm] Av = Vertical seismic acceleration Av = 0.087 [g] for OLE Av = 0.224 [g] for CLE t = Shell plate thickness for each course [mm] 1) Product hydrostatic membrane force Nh is calculated as follows. Nh = gGY ¡¿ D / 2 2) Impulsive hoop membrane force Ni is calculated as follows. When, For tanks with D/H ¡Ã 1.333, Ni = 8.48 x Ai x GDH [ ... I1 :H:-:: - 0. .5 I\ H::-::J I 1I t a-n-h I\ .0 .8-6-6- -H:-JI ] 3) Convective hoop membrane force Nc is calculated as follows; Nc = 1 85 x Ac x GD^2 x cosh [3.68(H-Y) ... Where; Y = Height from the bottom of the course under consideration to the normal Maximum operating liquid level [m] D = Inner tank diameter; 78 [m] H = Maximum operating liquid level; 35.811 [m] Ai = Acceleration coefficient for impulsive design response = 0.133 [g] for OLE = 0.336 / 1.5 * 1 = 0.224 [g] for CLE Ac = Acceleration coefficient for convective design response = 0.005 [g] for OLE = 0.014 [g] for CLE G = Design specific gravity of the liquid; 0.47 g = Gravity acceleration; 9.80665 [m/s^2] Note 1) According to API 620 App. L, Table L-1 Q, force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode.

17 10 of 28 (b) Allowable Stress Allowable stress is calculated as follows in accordance with API 620. Table 4-1 Allowable stress Seismic load condition Allowable stress [MPa] Remark OLE Min. ( 1/3 x St, 2/3 x Sy ) 1.33 API 620 L4.2.5, API 620 Q.3.3.6 = 305.6 API 620 Q.3.3.6 CLE Sy = 399.8 NFPA 59A (2001) 4.1.3.6 (a) (c) Calculation Result Following table shows the calculation result. Table 4-2 Distribution of hoop stress for OLE seismic load Product hydrostatic Impulsive hoop Convective hoop Vertical seismic I Course Height membrane force membrane force membrane force membrane force No. Y [m] Nh [N/mm] N [N/mm] Nc [N/mm] AvNh [N/mm] 9 3.301 593.38 124.35 22.91 51.63 8 7.181 1290.83 255.? 4 19.46 112.31 7 11.371 2044.01 377.73 16.45 177.83 6 15.251 2741 .46 474.00 ? 4.25 238.51 5 19.441 3494.64 559.31 12.41 304.04 4 23.321 4192.09 621.05 11.14 364.72 3 27.485 4940.60 668.83 10.19 429.84 2 31.649 5689.10 697.50 9.63 494.96 35.8? 1 6437.24 707.05 9.45 560.04 Table 4-3 Total hoop stress on shell plate for OLE seismic load Shell plate Total combined Allowable Course thickness hoop stress Stress Judge No. t [mm] O"t [MPa] O'allowable [MPa] 9 10.0 73.0 305.6 ¡£K 8 10.0 157.? 305.6 ¡£K 7 10.0 246.2 305.6 OK 6 12.4 263.9 305.6 OK 5 15.5 266.6 305.6 ¡£K 4 18.7 262.7 305.6 ¡£K & 3 22.0 260.8 305.6 OK 2 25.2 259.7 305.6 OK 28.5 257.6 305.6 OK

17 12 of 28 Table 4-4 Distribution of hoop stress for CLE seismIc load Product hydrostatic Impulsive hoop Convective hoop Vertical seismic Height membrane force membrane force membrane force membrane force Y [m] Nh [N/mm] Ni [N/mm] Nc [N/mm] AvNh [N/mm] 3.301 593.38 209.42 64.15 132.92 7.181 1290.83 429.70 54.47 289.15 11.371 2044.01 636.18 46.06 457.86 15.251 2741 .46 798.31 39.89 614.09 19.441 3494.64 941.99 34.73 782.8 23.321 4192.09 1045.97 31.? 7 939.03 27.485 4940.60 1126.45 28.51 1106.7 31.649 5689.10 1174.74 26.96 1274.36 35.811 6437.24 1190.82 26.45 1441.95 Table 4-5 Total hoop stress on shell plate for CLE seismic load Shell plate Total combined Allowable Course thickness hoop stress Stress Judge No. t [mm] ¡£t [MPa] O"allowable [MPa] 9 10.0 85.0 399.8 OK 8 10.0 181.2 399.8 OK I 7 10.0 283.0 399.8 OK 6 12.4 302.4 399.8 OK 5 15.5 304.6 399.8 OK 4 18.7 299.4 399.8 OK ~ 3 22.0 296.4 399.8 OK 2 25.2 294.6 399.8 OK I 1 28.5 291.5 399.8 L__ ¥á¡®¡¹ 4.3 Overtuming Moment and Horizontal Force According to API 620 L.3.2.4, the over turning moment M [Nm] applied to the botlom of shell shall be determined using the following equation. M = .J [Ai(WiXi + 1t1°­Xs)]2 + [AcCÂ¥Xc)]2

17 13 of 28 Aj = Impulsive horizontal design seismic response factor = 0.133 [g] for OLE = 0.336/1.5²¨ = 0.224 [g] for CLE Ac = Convective horizontal design seismic response factor = 0.005 [g] for OLE = 0.014 [g] for CLE Wj = Effective impulsive portion of the liquid weight [N] Xj = Height from the bottom of the tank shell to the center of action of the lateral seismic force related the impulsive liquid force for ringwall moment [m] Ws = Total weight of tank shÀ× 1 £¬ appurtenances and a half of shell insulation; 1.5722 x 107 [N] Xs = Height from the bottom of the tank shell to the shell's center of gravity; 13,429 [m] Wc = Effective convective portion of the liquid weight [N] Xc = Height from the boUom of the tank shell to the center of action of the lateral seismic force related the convective liquid force for ringwall moment [m] Note 1) According to API 620 App. L, Table L-1 Q , force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode. L, Table L-1 Q , force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode. According to API 650 E.6.? .1 and E6.1.2, Wj, Xj, W c, Xc are calculated as follows, tanh10.866 ¶ç Wi = ¡¢n ¡¦xWT 0.866 ´½ = 3.9936 x 108 [N] Xj = 0.375H = 13,429 [mm] D 13.67H¡¢ Wc = 0.230 °ü tanh \-D-) WT = 3.6883 x 108 [N] Where,

17 14 of 28 WT = Total weight of the tank content; 7.887? X 108 [N] According to API 650 E6.1 , Horizontal force (Total design base shear) V [N] is ¶°¶ìlated as below. v= ÇÔ±í2 Where, Vj = Design base shear due to impulsive component of the effective weight of tank and contents; = Ai X (Ws + Wf + Wi) [N] Vc = Design base shear due to convective component of the effective sloshing weight ; [N] = Ac X Wc [N] Wf = Weight of tank boUom = 2.3056 x 106 [N] Following table shows the result of overturning moment and base share. Table 4-6 Ove´Ùurning moment and base share ------- Overturning moment M [Nm] Base share V [N] ¡£BE 7.4637 X 108 5.5544 X 107 ¡¹ CLE 1.2601 X 109 9.3638 X 107 4.4 Necessity of Anchorage According to API 620 L.4.2.6 and API 650 E.6.2.1.1.1 , requirement of the anchorage is obtained from following equation¡® M J = D2{Wt Cl - O.3Av) + Wa} = 0.577 for OLE ¸£ ? .0 = 1.00 for CLE µè 1.54 ˼մ »þ¥ø ¾ß N¡± N¡± Where, J = Anchorage ratio, when J > 1.0, mechanically anchor is required for OLE J > 1.54, mechanically anchor is required for CLE Wt = Total weight of tank shell and appurtenances acting at base of shell [N/m] Ws ¥ðD Wa = Force resisting u ¹Ì i¾ß in annular region

17 15 of 28 = 99tbÆÒÆÛGe = 162,052 [N/m] for OLE = 158,595 [N/m] for CLE tb = Nominal thickness of the annular plate = 16.7 [mm] Ge = Effective specified gravity including vertical seismic effects = G(l - O.3Av) = 0.46 for OLE = G(l - O.3Av ) = 0.44 for CLE G = Design specific gravity of the liquid = 0.470 Fy = Minimum specified yield strength of annular plate = 586.1 [Mpaf1 Note 1) Refer to ¡°MECHANICAL ENGINEERING TANK DESIGN BASIS (LNG Storage Tanks) (IPC-5021544-12012-T-MV-TS-003)" Therefore anchorage is not necessary. 4.5 Compressive Stress on Shell Plate (a) Compressive stress According to API 650 E.6.2.2.1 , the maximum longitudinal shell compression stress at the botlom of shell for self-anchored tanks is calculated as follow. { _ . _ /. __ ." 1. 273M ¡¢1 o"c = (wtCl + O.3Av) + L;":;lYJ) ? ":,,. for OLE (J 0.785) \O.607-0.18667[j 1¥é J 1000ts = 12.4 [MPa] Where, ts = Thickness of the botlom shell plate = 28.5 [mm] (b) Allowable stress According to API 650 E.6.2.2.3, The allowable stress Fc [MPa] for shell plate compression is calculated as follow. 1"\2 When GH ´Æ =162.1>44

17 16 of 28 Fc = 83 ¶ä = 30.3 [MPa] (c) Calculation result The following table shows the results. ------- Compressive stress [MPa] Allowable stress [MPa] Judge OLE 7.4 30.3 OK CLE 12.4 30.3 OK 4.6 Annular Plate Width According to API 650 E.6.2.1.1.2, the width of bottom annular plate that is measured radially inward from the shell ¡°L", should be equal to or greater than the value obtained as follows. I F .. L = 0.01723th I_J u ¡® IHGe = 1759 [mm] < 1770 [mm] (Design annular plate width) 4.7 Sliding Resistance OK According to API 650 E. 7.6, Total design base shear (horizontal force) V , should be equal to or smaller than the value Vs obtained as follows; Vs = ¥ì x (Ws + Wf + Wt ) X (1.0 - 0.3 x Av) Where, Vs = Allowable base shear [N] ´Ï = Maximum friction coefficient for tank sliding = tan30011.5 = 0.3849 for OLE (According to API620 L4.2.10) = tan300 = 0.5773 for CLE (According to API620 L4.3.3) Ws = Total weight of tank shell, appurtenances and a half of shell insulation = 1.5722 X 107 [N] Wf = Weight of tank bottom = 2.3056 x 106 [N] WT = Total weight of the tank content = 7.8871 x ? 08[N] Av = Vertical seismic acceleration = 0.087 [g] for OLE = 0.224 [g] for CLE

17 17 of 28 The flÀÌ lowing table shows the results. Table 4.7 Result of sliding resistance Total design base shear v'1 Allowable base shear Vs Judgment [N] [N] (V < Vs ) ¡£BE 5.5544 X 107 3.0240x108 OK CLE 9.3638 X 107 4.3443x108 ¡£K Note *1 : The value of V is shown in Table 4-6. 5. STIFFENER OF INNER TANK Gas pressure on both side of the shell is always balanced. But annular space is filled with perlite insulation, so the external pressure of perlite insulaiion acts on the inner tank shell when inner tank is empty. The stiffeners of inner tank are set to prevent inner tank from external buckling of inner tank shell. 5.1 Extemal Pressure In order to limit the exiernal pressure caused by the perlite powder, the resilient glass-wool blanket is installed on the outer surface of inner tank shell. The expected change of resilient glass-woÀÌ blanket thickness during the life-time of tank is shown in Fig 5-1. (a) During filling perlite powder and cool down When the annular space is filled with the perlite powder, the resilient glass-wool blanket is preCLEd by perlite powder. Then the inner tank is cooled down, the inner tank shell shrinks. The thermal displacement of inner tank by shrinkage dT [m] can be calculated by following equation; dT = a (Ta - TL) x R = 0.0771 [m] Where dT = Displacement of inner tank [m] ¥á = Coefficient of linear expansion of inner tank: 9.2x1 0.6 [1 r C] T a = Max. Ambient temperature; 40 [oC] TL = Operating temperature; -175 [oC]



17 7. SEISMIC LOAD CALCULATION ( ASCE-7 )

DescriptionSymbolValueUnitsRemarkNo.
  Occupancy Category OC=IIIASCE 7-10 Table 11.5-12
  Importance Factor I =1.25ASCE 7-10 Table 11.5-13
  Soil Site Class SC =DASCE 7-10 Table 11.4-1, 11.4-24
  Seismic Design Category SDC=DASCE 7-10 Table 11.6-25
  Height from base to Tank Top h =19.840mHeight of the base to tank top6
  Operating Weight Wo =1480.2tonASCE 7-10 Section 15.4.37
Spectral response acceleration parameter and Site Coefficients:8
  Spectral response accel. param.(0.2 sec) SS =0.55gASCE 7-10 Fig. 22-1 to 22-149
  Spectral response accel. param.(1.0 sec) S1 =0.22gASCE 7-10 Fig. 22-2 to 22-1410
  Site Coefficients (Fa) Fa =1.36ASCE 7-10 Table 11.4-111
  Site Coefficients (Fv) Fv =1.96ASCE 7-10 Table 11.4-212
Maximum Spectral Response Accelerations for Short and 1-Second Periods:13
  Max. Spectral accel. param(0.2 sec) SMS =0.748gSMS = Fa*SS14
  Max. Spectral accel. param(1.0 sec) SM1 =0.431gSM1 = Fv*S115
Design Spectral Response Accelerations for Short and 1-Second Periods :16
  Design Spectral accel. param(0.2 sec) SDS =0.499gSDS = (2/3)¡¤Fa¡¤SS17
  Design Spectral accel. param(1.0 sec) SD1 =0.287gSD1 = (2/3)¡¤Fv¡¤S118
Approx. Fundamental Period :19
  Period Coefficient Ct =0.0724ASCE 7-10 Table 12.8-2 (Ct=0.0724)20
  Fundamental Period, T = Ct * h^0.8 T =0.7903secASCE 7-10 Eqn. 12.8-721
Seismic Design Coefficients and Factors :23
  Response Modification Coefficients R =3.0R=3 (ASCE 7-10 Table 15.4-2 04a:Elevated tanks)24
  CS = SDS / (R/I) CS =0.151ASCE 7-10 12.8.1.1, Eqn. 12.8-225
  CS_max = SD1 / [T*(R/I)] CS_max=0.151 Where For T ¡Â TL(4sec)
ASCE 7-10 Eqn. 12.8-3
26
  CS_min = Max(0.044*SDS*I, 0.03) CS_min=0.030ASCE 7-10 Eqn. 15.4-1 (Suppl. 2)27
  CS_used = CS_min ¡Â CS ¡Â CS_max CS_used=0.15128
  CS_ASD = 0.7 * CS CS_ASD=0.106ASCE 7-10 2.4.1 LOAD COMBINATION(ASD) 5,6,829
[New and Cold Condition] Base Shear and Over Turning Moment : [For DESIGN]31
  Operating Weight Wo =1480.2tonTank Operating Weight 32
  Base Shear, V_ASD = CS_ASD * Wo V_ASD=156.5tonASCE 7-10 Eqn. 12.8-133
  Overturning Moment, Mo = h1 * V_ASD Mo =1697.6ton-m(PVDM 4th Edi. 217 page)34
  Height from ground level to Tank Equator Lineh1 =10.850m35

¡¡Sa [g] : Maximum Consider Earthquake Ground Spectral Acceleration
¡¡Sd [g] : Seismic Design Spectral Acceleration = Cs


17 6. WIND LOAD CALCULATION
   DESIGN CODE : ASCE 7-10

DescriptionSymbolValueUnitRemarkNo.
  RISK CATEGORYOC =III1
  EXPOSURE CATEGORYEC =C2
  DESIGN WIND SPEED (3sec. gust)V =63.00m/secV = 226.80 km/hr3
  Wind directionality factorKd =0.9504
  Velocity pressure exposure coefficientKz =1.0325
  Topographic factorKzt =1.006
  Gust-effect factorG =0.857
  Force Coefficient for sphereCf =0.808
  Tank Out-DiameterDo=17160 mm9
  Insulation ThicknessiThk=0 mm10
  Tank Out-diameter plus Insulation ThicknessOD=17.16 mOD = Do + 2 * iThk11
  Sectional Area of Sphere Tank (Incl. Insulation Thick.)As =231.27m©÷As=1.2*(¥ð*17.162/4)
(20% Up)
12
  Sectional Area of etc.(Column & Brace,Stringer, P/F)Ac =139.89m©÷13
  Total Projection Area (Af = As + Ac)Af =371.16m©÷Af = As + Ac14
  Wind Velocity Pressure
    qz=0.613¡¤Kz¡¤Kzt¡¤Kd¡¤V©÷/ 9.80665 (kg/m©÷)
qz =243.23kg/m©÷15
  Height form ground level to Tank Equator LineH =11.55m16
  Design Wind Force, Fw = qz ¡¤ G ¡¤ Cf ¡¤ Af Fw =61.4Ton17
  Base Shear Force Vw = FwVw =61.4Ton18
  Overturning Moment Mw = Vw * HMw =709.2Ton-m19


18 7. SEISMIC LOAD CALCULATION
  A. ÅÊÅ©ÀÇ ³»Áø¼³°è ( °¡½º½Ã¼³ ³»Áø¼³°è±âÁØ KGS GC203 + KBC 2016 )

1. ÁöÁø°è¼ö Seismic Data ( KGS GC203 2018³â + KBC 2016 )
DescriptionSymbolºØ±«¹æÁö±â´É¼öÇàUnitsRemark
 Áß¿äµµ µî±Þ : GC203 Ç¥2.2.1.2.2ƯƯ2
 ³»Áø µî±Þ : GC203 Ç¥2.2.3.1 ³»Áøµî±Þ ºÐ·ù³»Áø Ư³»Áø Ư3
 - ÀçÇöÁÖ±â : GC203 Ç¥2.4 °¡½º½Ã¼³ ³»Áø¼º´É¸ñÇ¥RYEAR =2400200³â4
 - À§Çèµµ°è¼ö ( I ) : GC203 Ç¥2.5.3.2 À§Çèµµ °è¼öI =2.000.735
 ÅÊÅ© ¼³Ä¡ Áö¿ª : GC203 Ç¥2.5.3.1 ÁöÁø±¸¿ªÁö¿ª =ÀÎõÀÎõ6
 Áö¿ª °è¼ö ( Z ) : GC203 Ç¥2.5.3.1 ÁöÁø±¸¿ª°è¼ö(Z)Z =0.110.11g7
 À¯È¿¼öÆòÁö¹Ý°¡¼Óµµ S = Z * IS =0.22000.0803g8
 Áö¹ÝÀÇ ºÐ·ù : Ç¥.2.5.5 Áö¹ÝÀÇ ºÐ·ù ( Ground Type )SOIL =S4S49
 ´ÜÁÖ±â ÁõÆø°è¼ö : Áö¹ÝÁõÆø °è¼ö (GC203 Ç¥ 2.5.6.1.2)Fa =1.36001.600010
 ÀåÁÖ±â ÁõÆø°è¼ö : Áö¹ÝÁõÆø °è¼ö (GC203 Ç¥ 2.5.6.1.2)Fv =1.96002.2000g11
 À¯È¿ Áö¹Ý°¡¼Óµµ (EGA = Fa ¡¤ S)EGA = Fa ¡¤ S0.29920.1092g12
2. Ç¥Áؼ³°èÀÀ´ä½ºÆåÆ®·³ Áö¹Ý°¡¼Óµµ °è»ê
 ´ÜÁֱ⠼³°è ½ºÆåÆ®·³ °¡¼Óµµ, Sa(Max)2.5¡¤Fa¡¤S=0.7480.321g15
 1 sec. ¼³°è ½ºÆåÆ®·³ °¡¼Óµµ, Sa(1)Fv¡¤S =0.4310.177sec16
 ÀüÀÌÁÖ±âÀÇ °è»ê : To = 0.2¡¤Ts =0.1150.110sec17
  ¡¡KGS GC203(2018) ±×¸² 2.5.6.1.2Ts=Fv/(2.5¡¤Fa) =0.5760.550sec18
  ¡¡¼³°èÀÀ´ä½ºÆåÆ®·³ ÀüÀÌÁÖ±â, GC203 Ç¥ 2.5.6.1.1(1) TL =3.0003.000sec19
 ¹ÝÀÀ¼öÁ¤°è¼ö Response Modification Factor
( KBC 2016 - ǥ 0306.11.1 )
R =3.01.020
 Ç¥Áؼ³°èÀÀ´ä½ºÆåÆ®·³ Áö¹Ý°¡¼Óµµ Sa(T) = Sa(Max)Sa(T) =0.7480.321g21
3. ±¸Á¶¹°ÀÇ °íÀ¯Áøµ¿¼öÀÇ °è»ê, Fundamental Period Calculation, (T) (°íÀ¯Áֱ⠻êÁ¤¹ý : KBC 0306.5.4 )
 °ÇÃ๰ÀÇ ÃÖ»óÃþ±îÁöÀÇ ³ôÀÌHn =11.5511.55m22
 Ã¶°ñ ¸ð¸àÆ®°ñÁ¶ °è¼öCt =0.0850.085sec23
 °íÀ¯Áֱ⠰è»ê ( KBC 0306.5.4 ),
Structural Period of Vibration T = Ct¡¤Hn(3/4)
T =0.5330.533sec24
4. ÅÊÅ©ÀÇ ³»Áø¼³°è °¡¼ÓµµÀÇ °è»ê ( Design spectrum acceleration )
 0¡¡¡Â T ¡Â To , [ X ] Sd(T) = Fa¡¤S (1+1.5¡¤T/To) / RSd(T) =N/AN/Ag28
 To ¡Â T ¡Â Ts , [ O ] Sd(T) = 2.5 ¡¤ Fa ¡¤ S / RSd(T) =0.2490.321g29
 Ts ¡Â T ¡Â TL , [ X ] Sd(T) = (Fv ¡¤ S / T) / RSd(T) =N/AN/Ag30
 ¡¡¡¡TL <¡¡T , [ X ] Sd(T) = Fv ¡¤ S * (TL / T2) / RSd(T) =N/AN/Ag31
 ÅÊÅ©ÀÇ ³»Áø¼³°è °¡¼Óµµ, Sd(T) = Sa(T) / R, Cs = Sd(T)Cs = Sd(T) =0.2490.321g32
5. ÅÊÅ© ¹Ø¸é Àü´Ü·Â, Àüµµ¸ð¸àÆ® ÀÇ °è»ê Base Shear and Overturning Moment
 Tank Inside DiameterD =16.84016.840m34
 Height from ground level to Tank Equator Lineh1 =10.9210.92m35
 Tank Operating WeightWo =1735.61735.6Ton36
 Design Base Shear Force¡¡V = Cs * WoV =432.2557.1Ton37
 Overturning Moment Mo = h1 * VMo =4719.66083.5Ton-m38

19 B. ÅÊÅ©ÀÇ ³»Áø¼³°è °¡¼Óµµ Ç¥Áؼ³°èÀÀ´ä½ºÆåÆ®·³
 
  Sa[g] : Åä»çÁö¹Ý ¼öÆòÁö¹Ý¿îµ¿ÀÇ °¡¼Óµµ
  Sd[g] : ±¸Á¶¹°(ÅÊÅ©)ÀÇ ³»Áø¼³°è °¡¼Óµµ ( Seismic Design Spectral Acceleration = Cs)

 

7. SEISMIC LOAD CALCULATION ( UBC97 )
DescriptionSymbolValueUnitsRemarkNo.
SEISMIC DATA1
  SEISMIC ZONE ZONE=2BTABLE 16-I2
  SEISMIC ZONE FACTOR Z =0.2TABLE 16-I3
  Soil Profile Type SOIL=SCTABLE 16-J4
  Na For Zone 4 only Na=N/ATABLE 16-S(Na:1.0~1.5)5
  Nv For Zone 4 only Nv=N/ATABLE 16-T(Nv:1.0~2.0)6
  SEISMIC COEFFICIENT Ca=0.24TABLE 16-Q7
  SEISMIC COEFFICIENT Cv=0.32TABLE 16-R8
  Importance Factor I =1.25TABLE 16-K9
  Factor for Tank (R=2.2) R =2.2TABLE 16-P Non-building Structure10
o Calculation of Structure Period (T) :12
  Height of the base to Top Platform of Sphere Tank hn =19.9m13
  Numerical Constant (Steel moment-resisting frames)Ct =0.085314
  Fundamental period T = Ct * hn(3/4) T =0.8037sec.(Eq. 30-8) 15
o Calculation of Horizontal Seismic Factor ( CS = Sd ), Sd : Design Spectral Acceleration17
  Base Shear coefficient CS_1=Max[Cv*I/(R*T),0.56Ca*I]CS_1=0.226Max( Eq(30-4), (34-2) ]18
  Max. Base Shear coefficient CS_2=2.5*Ca*I/RCS_2=0.341Eq (30-5)19
  Min. Base Shear coefficient CS_3=0.11Ca*ICS_3=0.033Eq (30-6)20
  Base Shear for Zone 4 only CS_4=0.8Z*Nv*I/RCS_4=N/AEq (30-7) for Zone 421
  Applicate Seismic Factor CS =0.226CS = Min(CS_1, CS_2) 22
  ASD Horizontal Seismic Factor (UBC-97 1612.3.1)
CS_ASD = CS / 1.4
CS(ASD)=0.161UBC97 1612.3.1 Load Combination(ASD)23
Base Shear and Over Turning Moment : 24
  Tank Operating Weight Wo =3967.5Ton 25
  Design Base Shear V = CS_ASD * WV =638.8Ton26
  Overturning Moment Mo= h1 * VMo =10061.1Ton-m27
  Height from ground level to Tank Equator Lineh1 =15.750m28

¡¡Sa [g] : Maximum Consider Earthquake Ground Spectral Acceleration
¡¡Sd [g] : Seismic Design Spectral Acceleration = Cs
½ÃÀ۽ð£ = [2024-12-05 09:03:50.0198]
Á¾·á½Ã°£ = [2024-12-05 09:03:50.0227]