Description | Symbol | Value | Unit |
Design Liquid Level 2) | HHLL = | 30600 | mm |
Maximum Operation Level 1) | HLL = | 30400 | mm |
Minimum Operating Level | LLL = | 1540 | mm |
Pump Trip Level | LLLL = | 1500 | mm |
Shell Height = HLL + Sloshing Height + Margin | HT = | 34000 | mm |
Description | Symbol | Value | Unit |
Coefficient of thermal expansion for steel plate | ¥á = | 1.15 x 10-5 | /¡ÆC |
Operating temperature (Minimum) | To = | -41.5 | ¡ÆC |
Ambient temperature (Maximum) | Ta = | 38 | ¡ÆC |
Temperature defference, ¥ÄT = Ta- To | ¥ÄT = | 79.5 | ¡ÆC |
Cold diameter (Dcold) ¡¡Dcold = 54,000 ¡¿ [1 - (41.5 + 38) ¡¿ (1.15 ¡¿ 10-5)] | Dcold = | 53,951 | mm |
Cold height (Hcold) ¡¡Hcold = 34,000 ¡¿ [1 - (41.5 + 38) ¡¿ (1.15 ¡¿ 10-5)] | Hcold = | 33,969 | mm |
Maximum liquid capacity in operating condition (VCOLD) ¡¡Vcold = {¥ð¡¿Dcold©÷/ 4} ¡¿ ¥ÄH = (¥ð ¡¿ 53.9512©÷/ 4) ¡¿ 30.6 | Vcold = | 69,954 | m©ø |
in which, | |||
¥ÄH = HHLL = 30,600 mm = 30.6 m | HHLL = | 30.6 | m |
Description | Symbol | Value | Unit |
Tank Diameter; | D = | 84.6 | m |
Working Volume; | VW = | 180000 | m©ø |
Coefficient of Thermal Contraction; | ¥ÄL / L = | 0.00173 | mm/mm |
Volume Between LAH and LAHH | 7000 | m©ø | |
A Min. Normal Operating Level (Including the shrinkage of pump column) | A = | 1.839 | m |
B Max. Normal Operating Level (LAH) | B = | 32.136 | m |
C Max. Allow Liquid Level (LAHH) | C = | 1.25 | m |
D Freeboard | D = | 1.013 | m |
Cold Diameter, D x ( 1 - ¥ÄL / L) | DCOLD = | 84.454 | m |
Pump, Min. Normal Operating Level | PML(warm)= | 1.735 | m |
Pump Column Length (warm), | LPW = | 40.664 | m |
Pump Column Length (cold), | LPC = | 40.56 | m |
The Shrinkage of Pump Column, | LPW - LPC = | 0.104 | m |
Cold Height for Working Volume , | B (VW + VD) = | 32.136 | m |
Dead Space Consisting of Internal Structure and Piping, | VD = | 20 | m©ø |
Liquid height to Min. Normal Operating Level = | A = | 1.839 | m |
Liquid height to Max. Normal Operating Level = | A + B = | 33.979 | m |
Liquid height to LAHH | A + B + C = | 35.224 | m |
Cold Height of Tank = | A + B + C + D = | 36.237 | m |
Now need to calculate the slosh height of the liquid contents using API 620 : Appendix L : L.4.2.8 or L.4.3.2 | |||
Tc = | secs | ||
Ks = | 0.606 | ||
OBE (seismic constraints on design study ; 30140-20-GE-ER-002) | Af_OBE = | 0.02 | OBE |
SSE | Af_CLE = | 0.027 | SSE |
Freeboard OLE event ¥äs = 0.42DAf + hs | Ds_OBE = | 1.013 | m |
¥äs = 0.42DAf + 0 | Ds_CBE = | 0.95 | m |
Warm Height of Tank = m | H_warm = | 36.299 | m |
The additional height for the resilient blanket suspension system shall be considered (200mm) m | H_tot = | 36.449 | m |
INNER TANK SIZE = m dia x m high |
Course No. | Shell width W[mm] | Operating Condition | Hydrostatic-Test Condition | Used Thickness [mm] | JURGE | Weight [Ton] | Static Head Diagram | ||||
Height Hd [m] | Pressure Pd [mm] | Thickness td [mm] | Height Ht [m] | Pressure Pt [mm] | Thickness tt [mm] | ||||||
9 | 4035 | 3.663 | 0.01688 | 2.87 | 0.000 | 0.00000 | 0.00 | 10.00 | OK | 77.620 | |
8 | 4035 | 7.698 | 0.03548 | 6.02 | 0.000 | 0.00000 | 0.00 | 10.00 | OK | 77.620 | |
7 | 4035 | 11.733 | 0.05408 | 9.18 | 0.000 | 0.00000 | 0.00 | 10.00 | OK | 77.620 | |
6 | 4035 | 15.768 | 0.07268 | 12.33 | 0.783 | 0.00768 | 0.88 | 12.40 | OK | 96.250 | |
5 | 4035 | 19.803 | 0.09127 | 15.49 | 4.818 | 0.04725 | 5.42 | 15.50 | OK | 120.314 | |
4 | 4035 | 23.838 | 0.10987 | 18.65 | 8.853 | 0.08682 | 9.96 | 18.70 | OK | 145.155 | |
3 | 4164 | 28.002 | 0.12906 | 21.90 | 13.017 | 0.12765 | 14.65 | 22.00 | OK | 176.233 | |
2 | 4164 | 32.166 | 0.14826 | 25.16 | 17.181 | 0.16849 | 19.33 | 25.20 | OK | 201.869 | |
1 | 4162 | 36.328 | 0.16744 | 28.42 | 21.343 | 0.20930 | 24.02 | 28.50 | OK | 228.198 | |
SUM | 36700 | mm | 1200.879 |
USC | SI UNIT | This Tank Diameter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nominal Cylinder Diameter | Nominal Plate Thickness | Nominal Cylinder Diameter | Nominal Plate Thickness | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D (ft) | ts.Min (in) | D (m) | ts.Min(mm) | D (ft, m) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
60 < D | 3/16 | 18.288 < D | 4.76 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
60 ¡Â D ¡Ã 140 | 1/4 | 18.288 ¡Â D ¡Ã 42672 | 6.35 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
140 < D ¡Ã 220 | 5/16 | 42.672 < D ¡Ã 67.056 | 7.94 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
220 < D | 3/18 | 67.056 < D | 9.53 | 255.906 (ft) 78 (m) |
Where | ||||
Height from the botlom of the course under consideration to the Max. design liquid level | Hd = | AVOBE TABLE | m | |
Static liquid pressure, Pd = ¥ñ ¡¿ g ¡¿ Hd¡¿10-6 | Pd = | AVOBE TABLE | MPA | |
Calculated minimum shell plate thickness | td = | AVOBE TABLE | mm | |
Gravity acceleration; 9.80665 | g = | 9.80665 | m/s2 | |
Diameter of inner tank | D = | 78000 | mm | |
Radius of inner tank | R = | 39000 | mm | |
LNG density; | ¥ñ = | 470 | kg/m©ø | |
Specific Gravity | Gd = | 0.471 | ||
Allowable design stress; 229.8 | Sd = | 229.8 | MPa | |
Joint efficiency (API 620 Table 5-2 for butt joint, double welding, full RT) | E = | 1.0 | MPa | |
Corrosion allowance | C = | 0.0 | mm |
Refer to Guide to STORAGE TANK & EQUIPMENT | ||||||||
The David Taylor model basin Formula is used to decide upon the pitching of the stiffeners on the tank shell. | ||||||||
This is taken from the work of Windenburg and Trilling (Reference 18.4), some of which is based on test work | ||||||||
carried out on behalf of the US Navy as far back as 1929. |
|
Symbol | Value | Unit | |||||||
(J ¡Â O.785) ¥òc = | 7.5739 | MPa |
| ||||||
(J > O.785) ¥òc = | 11.9925 | ??? | | ||||||
D = | 78.0 | m | ??? | ||||||
H = | 35.811 | m | ??? | ||||||
Ho = | 0.0 | m | ??? | ||||||
Wt = Ws / ¥ð*D | 64159.85 | N/m | ??? | ||||||
Fy = | 586.10 | MPa | ??? | ||||||
tb = | 16.70 | mm | ??? | ||||||
Symbol | OLE | CLE | Unit | ||||||
Ai = | 0.133 | 0.224 | g | ||||||
Ac = | 0.005 | 0.014 | g | ||||||
Av = | 0.087 | 0.224 | g | ||||||
Ge = G(1 - 0.3*Av) | 0.4536 | 0.4279 | ??? | ||||||
Wa = 99*tb*SQRT(Fy*H*Ge) | 161326 | 156679 | ??? | ||||||
J = | 0.525 | 0.916 | ??? | ||||||
Check J value | J ¡Â 0.75 | J ¡Â 1.54 | |||||||
Mechnical Anchor Required ? | Not Necessory | Not Necessory | ??? |
J ¡Â 0.785 | No calculated uplift under the design seismic overturning moment. The tank is self-anchored. | N/A |
0.785 < J ¡Â 1.54 | Tank is uplifting, but the tank is stable for the design load providing the shell compression. requirements are satisfied. Tank is self-anchored. | N/A |
J > 1.54 | Tank is not stable and cannot be self-anchored for the design load. Modify the annular ring if L < 0.035D is not controlling or add mechanical anchorage. | ¡Û |
Description | Symbol | OLE | CLE | Unit |
G*H*D2 / ts2 = | ÆǴܼö½Ä | 126.1 > 44 | 126.1 > 44 | |
Maximum longitudinal shell compression stress | ¥òc = | 7.6 | 12 | MPa |
Allowable Compressive Stress | Fc = | 30.3 | 30.3 | MPa |
¥òc < Fc then, OK | JURDE | OK | OK |
Descrition | Symbol | Unit : kN, m | Unit : Ton, mm | ||
Total weight of tank shell and shell attachment | Ws | 8706.42 | kN | 8706.42 | kN |
Total weight of Contents Weight | Wp | 397505.35 | kN | 397505.35 | kN |
Effective weight of insulation acting on the shell | Wns | kN | kN | ||
Effective impulsive portion of the liquid weight | Wi | 235624.24 | kN | 235624.24 | kN |
Effective convective (sloshing) portion of the liquid weight | Wc | 157271.62 | kN | 157271.62 | kN |
Total weight of tank shell, roof, framing, product, bottom, attachments, appurtenances | WT | 799107.63 | 799107.63 | ||
Height from the bottom of the tank shell to the center of action of the lateral seismic force related to the impulsive liquid force for ringwall moment | Xi | 11.4 | m | 11.4 | m |
Height from the bottom of the tank shell to the center of action of lateral seismic force related to the convective liquid force for ringwall moment | Xc | 18.99 | m | 18.99 | m |
Height from the bottom of the tank shell to the shell's center of gravity | Xs | 12.76 | m | 12.76 | m |
Height from base of shell to center action of the insulation load on tank shell | Xns | 17 | m | 17 | m |
Height from the bottom of the tank shell to the roof and roof appurtenances center of gravity | Xr | m | m |
Wight | Ws [kN] | Wf [kN] | Wi [kN] | Wc [kN] | WT [kN] |
Weight (kN) | 15722 | 2306 | 399342 | 368840 | 786209 |
Weight (Ton) | 16032 | 2351 | 407215 | 376112 | 801710 |
SEISMIC LEVEL | Base Shear at Impulsive Vi [kN] | Base Shear at Convective Vc [kN] | Total Base shaer V [kN] | Overturning moment Mrw [N-m] |
OBE | 55510 | 1844 | 55541 | 714325 |
CLE | 93491 | 5164 | 93633 | 1206250 |
Course No. | Shell thick. t[mm] | Shell width W[mm] | Height Y[m] | Product hydrostatic membrane force Nh [N/mm] | Impulsive hoop membrane force Ni [N/mm] | Convective hoop membrane force Nc [N/mm] | Vertical seismic membrane force Av·Nh/2.5 [N/mm] | Combined Hoop stress ¥òT [MPa] | Allowable Stress ¥òallow [MPa] | Stress Ratio ¥òT / ¥òallow | JURGE ¥òT < ¥òallow |
[mm] | [mm] | [m] | [N/mm] | ¥òT [MPa] | ¥òallow [MPa] | SR | SR < 1.0 OK | ||||
9 | 10.0 | 4035 | 3.146 | 565.51, 593.38 | 118.77, 124.35 | 23.06, 22.91 | 19.68, 51.63 | 73.0 / 68.8 | 399.8 | 0.239 | OK |
8 | 10.0 | 4035 | 7.181 | 1290.83, 1290.83 | 255.13, 255.14 | 19.45, 19.46 | 44.92, 112.31 | 157.1 / 155.1 | 0.514 | OK | |
7 | 10.0 | 4035 | 11.216 | 2016.14, 2044.01 | 373.54, 377.73 | 16.55, 16.45 | 70.16, 177.83 | 246.2 / 239.7 | 0.806 | OK | |
6 | 12.4 | 4035 | 15.251 | 2741.46, 2741.46 | 473.99, 474.00 | 14.25, 14.25 | 95.40, 238.51 | 263.9 / 260.1 | 0.864 | OK | |
5 | 15.5 | 4035 | 19.286 | 3466.77, 3494.64 | 556.49, 559.31 | 12.46, 12.41 | 120.64, 304.04 | 266.6 / 260.4 | 0.872 | OK | |
4 | 18.7 | 4035 | 23.321 | 4192.09, 4192.09 | 621.04, 621.05 | 11.13, 11.14 | 145.88, 364.72 | 262.7 / 258.3 | 0.860 | OK | |
3 | 22.0 | 4164 | 27.485 | 4940.59, 4940.60 | 668.83, 668.83 | 10.18, 10.19 | 171.93, 429.84 | 260.8 / 256.0 | 0.853 | OK | |
2 | 25.2 | 4164 | 31.649 | 5689.09, 5689.10 | 697.50, 697.50 | 9.63, 9.63 | 197.98, 494.96 | 259.7 / 254.5 | 0.850 | OK | |
1 | 28.5 | 4162 | 35.811 | 6437.24, 6437.24 | 707.05, 707.05 | 9.44, 9.45 | 224.02, 560.04 | 257.6 / 251.9 | 0.843 | OK |
Course No. | Shell thick. t [mm] | Total combined hoop stress ¥òT [MPa] | Allowable Stress ¥òallow [MPa] | Hoop Stress Ratio ¥òT / ¥òallow | JURGE ¥òT < ¥òallow |
9 | 10.0 | 73.0 / 68.8 | 399.8 | 0.239 | OK |
8 | 10.0 | 157.1 / 155.1 | 399.8 | 0.514 | OK |
7 | 10.0 | 246.2 / 239.7 | 399.8 | 0.806 | OK |
6 | 12.4 | 263.9 / 260.1 | 399.8 | 0.864 | OK |
5 | 15.5 | 266.6 / 260.4 | 399.8 | 0.872 | OK |
4 | 18.7 | 262.7 / 258.3 | 399.8 | 0.860 | OK |
3 | 22.0 | 260.8 / 256.0 | 399.8 | 0.853 | OK |
2 | 25.2 | 259.7 / 254.5 | 399.8 | 0.850 | OK |
1 | 28.5 | 257.6 / 251.9 | 399.8 | 0.843 | OK |
Course No. | Shell thick. t[mm] | Shell width W[mm] | Height Y[m] | Product hydrostatic membrane force Nh [N/mm] | Impulsive hoop membrane force Ni [N/mm] | Convective hoop membrane force Nc [N/mm] | Vertical seismic membrane force Av·Nh/2.5 [N/mm] | Combined Hoop stress ¥òT [MPa] | Allowable Stress ¥òallow [MPa] | Stress Ratio ¥òT / ¥òallow | JURGE ¥òT < ¥òallow |
[mm] | [mm] | [m] | [N/mm] | ¥òT [MPa] | ¥òallow [MPa] | SR | SR < 1.0 OK | ||||
9 | 10.0 | 4035 | 3.146 | 565.51, 593.38 | 200.04, 209.92 | 64.57, 64.15 | 50.67, 132.92 | 85.0 / 78.2 | 399.8 | 0.213 | OK |
8 | 10.0 | 4035 | 7.181 | 1290.83, 1290.83 | 429.69, 429.70 | 54.46, 54.47 | 115.66, 289.15 | 181.2 / 173.9 | 0.453 | OK | |
7 | 10.0 | 4035 | 11.216 | 2016.14, 2044.01 | 629.12, 636.18 | 46.33, 46.06 | 180.65, 457.86 | 283.0 / 267.2 | 0.708 | OK | |
6 | 12.4 | 4035 | 15.251 | 2741.46, 2741.46 | 798.30, 798.31 | 39.89, 39.89 | 245.63, 614.09 | 302.4 / 288.5 | 0.756 | OK | |
5 | 15.5 | 4035 | 19.286 | 3466.77, 3494.64 | 937.25, 941.99 | 34.89, 34.73 | 310.62, 782.80 | 304.6 / 287.4 | 0.762 | OK | |
4 | 18.7 | 4035 | 23.321 | 4192.09, 4192.09 | 1045.96, 1045.97 | 31.17, 31.17 | 375.61, 939.03 | 299.4 / 283.6 | 0.749 | OK | |
3 | 22.0 | 4164 | 27.485 | 4940.59, 4940.60 | 1126.45, 1126.45 | 28.51, 28.51 | 442.68, 1106.70 | 296.4 / 279.6 | 0.741 | OK | |
2 | 25.2 | 4164 | 31.649 | 5689.09, 5689.10 | 1174.73, 1174.74 | 26.95, 26.96 | 509.74, 1274.36 | 294.6 / 276.6 | 0.737 | OK | |
1 | 28.5 | 4162 | 35.811 | 6437.24, 6437.24 | 1190.82, 1190.82 | 26.44, 26.45 | 576.78, 1441.95 | 291.5 / 272.3 | 0.729 | OK |
Course No. | Shell thick. t [mm] | Total combined hoop stress ¥òT [MPa] | Allowable Stress ¥òallow [MPa] | Hoop Stress Ratio ¥òT / ¥òallow | JURGE ¥òT < ¥òallow |
9 | 10.0 | 85.0 / 78.2 | 399.8 | 0.213 | OK |
8 | 10.0 | 181.2 / 173.9 | 399.8 | 0.453 | OK |
7 | 10.0 | 283.0 / 267.2 | 399.8 | 0.708 | OK |
6 | 12.4 | 302.4 / 288.5 | 399.8 | 0.756 | OK |
5 | 15.5 | 304.6 / 287.4 | 399.8 | 0.762 | OK |
4 | 18.7 | 299.4 / 283.6 | 399.8 | 0.749 | OK |
3 | 22.0 | 296.4 / 279.6 | 399.8 | 0.741 | OK |
2 | 25.2 | 294.6 / 276.6 | 399.8 | 0.737 | OK |
1 | 28.5 | 291.5 / 272.3 | 399.8 | 0.729 | OK |
No | Items | Inner Tank | Outer Tank |
1 | Diameter of Tank | 54.0 m | 56.0 m |
2 | Height of Tank | 34.0 m | 36.0 m |
3 | Design Allowable Boil-off Rate | 0.06 wt% of Storage Capacity per Day | |
4 | Material | ASTM A537 CL.1 | ASTM A516 Gr. 60 & 70 |
5 | Design Temperature | -45 / 70¡ÆC | 70¡ÆC |
6 | Operating Temperature | -41.5¡ÆC | 38¡ÆC |
7 | Minimum Design Metal Temperature | -45¡ÆC | -18¡ÆC |
8 | Design Wind Speed | - | 53 m/s |
9 | Density of Product | 582 kg/m3 | - |
10 | Design Pressure | ||
11 | Internal Design Pressure | 20 kPa | |
12 | External Design Pressure | -0.5 kPa | |
13 | Operating Pressure | Liquid Head | 10 kPa |
14 | Hydrostatic Test Level | 30.6 m | - |
15 | Pneumatic Test Pressure1) | 25 kPa | |
16 | Spectral Acceleration | ||
17 | Horizontal Acceleration | OBE : 0.0627g, SSE : 0.154g | |
18 | Vertical Acceleration2) | OBE : 0.0418g, SSE : 0.1027g | |
19 | Imposed Load | - | 120 kg/m2 |
20 | Snow Load | - | 120 kg/m2 |
21 | Corrosion Allowance | 1.5 mm | 1.5 mm |
22 | Joint Efficiency | ||
23 | Shell Plate | 1 | 0.7 |
24 | Bottom and Roof Plates | As per Table 5-2 of API 620 |
No | Items | Inner Tank | Outer Tank |
No | Design code | API 620 11 th edition (2008) | |
1 | Addendum 1 (2009) | ||
2 | Addendum 2 (2010) | ||
3 | Addendum 3 (2012) | ||
4 | Tank type | Full Containment Tank, Elevated | |
5 | Bottom slab | ||
6 | Metal Inner Tank with Suspended | ||
7 | Deck and Concrete Outer Tank | ||
8 | Service LNG | ||
9 | Net working capacity | 160,000 m3 | |
10 | Inner tank shell height at ambient temperature | 36,700 mm | |
11 | Liquid Maximum design liquid level | 36,328 mm | |
12 | level Normal maximum operating level | 35,811 mm | |
13 | Normal minimum operating level | 2,200 mm | |
14 | Pump trip level | 2,000 mm | |
15 | Hydrostatic te5t level | 21,343 mm | |
16 | LNG design density | 470 kg/m3 | |
17 | Inner tank operating temperature | ~175 oC | |
18 | Maximum ambient temperature | 40 0C | |
19 | Corrosion allowance | Omm |
17 8 of 28 4. SEISMIC CALCULATION 4.1 Calculation of Sloshing Wave Height According to API 620 L 4.2.8 and L 4.3.2 sloshing wave height is calculated as follows; ¥ä_OLD = 0.42 ¡¿ Do ¡¿ Af = 164 [mm] for OLE ¥ä_CLE = 0.42 ¡¿ Do ¡¿ Af = 458 [mm] for OLE Where, ¥ä = Sloshing wave height [mm] Af = Horizontal response acceleration for sloshing mode; Af = 0.005 [g] for OLE Af = 0.014 [g] for CLE Do = Inner tank diameter at operating temperature = Da ¡¿ {1 - ¥á(Ta - To)} = 77,854 [mm] Da = Inner tank diameter at ambient temperature; 78,000 [mm] ¥á = Coefficient of linear expansion; 9.2 ¡¿ 10.6 [/¡É] Ta = Ambient temperature; 40 [¡É] To = Operating temperature; -164 [¡É] The height of inner tank shell shall have freeboard for the normal maximum operating level not to overflow by sloshing of liquid content. Therefore the required minimum shell height at seismic can be calculated by following expression. ¢º For OLE condition "H:Normal maximum operating level" + ¡°¥ä:Sloshing Wave Height" + 300 ¥ä OLE = 35,811 + 164 + 300 = 36,275 [mm] < Ho = 36,631 [mm] ..... OK ¢º For CLE condition "H:Normal maximum operatina level" + "¥ä:Sloshina Wave Heiaht" + 300 ¥ä CLE = 35.811 + 458 + 300 = 36.569 [mm] < Ho = 36.631 fmml ..... OK Ha = Tank height at ambient temperature; 36,700 [mm] Ho = Tank height at operating temperature Ho = Ha ¡¿ {1 - ¥á(Ta - To)} = 36,631 [mm]
17 9 of 28 4.2 Hoop Stress of Each Course on Tank Shell Plate (a) Method According to API 650 E6.1 .4, total combined hoop stress in tank shell St N/mm2 is calculated as follows; £« £ ¡¿ ¡À ¡¾ ¤º©÷©ø©ù©ü©ý©þ ¥òt = Nh ¡¾ SQRT [ Ni©÷+ Nc©÷+ (Av ¡¿ Nh)©÷] / t Where, Nh = Product hydrostatic membrane force [N/mm] Ni = Impulsive hoop membrane force in tank shell [N/mm] Nc = Convective hoop membrane force in tank shell [N/mm] Av = Vertical seismic acceleration Av = 0.087 [g] for OLE Av = 0.224 [g] for CLE t = Shell plate thickness for each course [mm] 1) Product hydrostatic membrane force Nh is calculated as follows. Nh = gGY ¡¿ D / 2 2) Impulsive hoop membrane force Ni is calculated as follows. When, For tanks with D/H ¡Ã 1.333, Ni = 8.48 x Ai x GDH [ ... I1 :H:-:: - 0. .5 I\ H::-::J I 1I t a-n-h I\ .0 .8-6-6- -H:-JI ] 3) Convective hoop membrane force Nc is calculated as follows; Nc = 1 85 x Ac x GD^2 x cosh [3.68(H-Y) ... Where; Y = Height from the bottom of the course under consideration to the normal Maximum operating liquid level [m] D = Inner tank diameter; 78 [m] H = Maximum operating liquid level; 35.811 [m] Ai = Acceleration coefficient for impulsive design response = 0.133 [g] for OLE = 0.336 / 1.5 * 1 = 0.224 [g] for CLE Ac = Acceleration coefficient for convective design response = 0.005 [g] for OLE = 0.014 [g] for CLE G = Design specific gravity of the liquid; 0.47 g = Gravity acceleration; 9.80665 [m/s^2] Note 1) According to API 620 App. L, Table L-1 Q, force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode.
17 10 of 28 (b) Allowable Stress Allowable stress is calculated as follows in accordance with API 620. Table 4-1 Allowable stress Seismic load condition Allowable stress [MPa] Remark OLE Min. ( 1/3 x St, 2/3 x Sy ) 1.33 API 620 L4.2.5, API 620 Q.3.3.6 = 305.6 API 620 Q.3.3.6 CLE Sy = 399.8 NFPA 59A (2001) 4.1.3.6 (a) (c) Calculation Result Following table shows the calculation result. Table 4-2 Distribution of hoop stress for OLE seismic load Product hydrostatic Impulsive hoop Convective hoop Vertical seismic I Course Height membrane force membrane force membrane force membrane force No. Y [m] Nh [N/mm] N [N/mm] Nc [N/mm] AvNh [N/mm] 9 3.301 593.38 124.35 22.91 51.63 8 7.181 1290.83 255.? 4 19.46 112.31 7 11.371 2044.01 377.73 16.45 177.83 6 15.251 2741 .46 474.00 ? 4.25 238.51 5 19.441 3494.64 559.31 12.41 304.04 4 23.321 4192.09 621.05 11.14 364.72 3 27.485 4940.60 668.83 10.19 429.84 2 31.649 5689.10 697.50 9.63 494.96 35.8? 1 6437.24 707.05 9.45 560.04 Table 4-3 Total hoop stress on shell plate for OLE seismic load Shell plate Total combined Allowable Course thickness hoop stress Stress Judge No. t [mm] O"t [MPa] O'allowable [MPa] 9 10.0 73.0 305.6 ¡£K 8 10.0 157.? 305.6 ¡£K 7 10.0 246.2 305.6 OK 6 12.4 263.9 305.6 OK 5 15.5 266.6 305.6 ¡£K 4 18.7 262.7 305.6 ¡£K & 3 22.0 260.8 305.6 OK 2 25.2 259.7 305.6 OK 28.5 257.6 305.6 OK
17 12 of 28 Table 4-4 Distribution of hoop stress for CLE seismIc load Product hydrostatic Impulsive hoop Convective hoop Vertical seismic Height membrane force membrane force membrane force membrane force Y [m] Nh [N/mm] Ni [N/mm] Nc [N/mm] AvNh [N/mm] 3.301 593.38 209.42 64.15 132.92 7.181 1290.83 429.70 54.47 289.15 11.371 2044.01 636.18 46.06 457.86 15.251 2741 .46 798.31 39.89 614.09 19.441 3494.64 941.99 34.73 782.8 23.321 4192.09 1045.97 31.? 7 939.03 27.485 4940.60 1126.45 28.51 1106.7 31.649 5689.10 1174.74 26.96 1274.36 35.811 6437.24 1190.82 26.45 1441.95 Table 4-5 Total hoop stress on shell plate for CLE seismic load Shell plate Total combined Allowable Course thickness hoop stress Stress Judge No. t [mm] ¡£t [MPa] O"allowable [MPa] 9 10.0 85.0 399.8 OK 8 10.0 181.2 399.8 OK I 7 10.0 283.0 399.8 OK 6 12.4 302.4 399.8 OK 5 15.5 304.6 399.8 OK 4 18.7 299.4 399.8 OK ~ 3 22.0 296.4 399.8 OK 2 25.2 294.6 399.8 OK I 1 28.5 291.5 399.8 L__ ¥á¡®¡¹ 4.3 Overtuming Moment and Horizontal Force According to API 620 L.3.2.4, the over turning moment M [Nm] applied to the botlom of shell shall be determined using the following equation. M = .J [Ai(WiXi + 1t1°Xs)]2 + [AcCÂ¥Xc)]2
17 13 of 28 Aj = Impulsive horizontal design seismic response factor = 0.133 [g] for OLE = 0.336/1.5²¨ = 0.224 [g] for CLE Ac = Convective horizontal design seismic response factor = 0.005 [g] for OLE = 0.014 [g] for CLE Wj = Effective impulsive portion of the liquid weight [N] Xj = Height from the bottom of the tank shell to the center of action of the lateral seismic force related the impulsive liquid force for ringwall moment [m] Ws = Total weight of tank shÀ× 1 £¬ appurtenances and a half of shell insulation; 1.5722 x 107 [N] Xs = Height from the bottom of the tank shell to the shell's center of gravity; 13,429 [m] Wc = Effective convective portion of the liquid weight [N] Xc = Height from the boUom of the tank shell to the center of action of the lateral seismic force related the convective liquid force for ringwall moment [m] Note 1) According to API 620 App. L, Table L-1 Q , force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode. L, Table L-1 Q , force reduction factor 1.5 is applied for self-anchored steel tank for CLE impulsive mode. According to API 650 E.6.? .1 and E6.1.2, Wj, Xj, W c, Xc are calculated as follows, tanh10.866 ¶ç Wi = ¡¢n ¡¦xWT 0.866 ´½ = 3.9936 x 108 [N] Xj = 0.375H = 13,429 [mm] D 13.67H¡¢ Wc = 0.230 °ü tanh \-D-) WT = 3.6883 x 108 [N] Where,
17 14 of 28 WT = Total weight of the tank content; 7.887? X 108 [N] According to API 650 E6.1 , Horizontal force (Total design base shear) V [N] is ¶°¶ìlated as below. v= ÇÔ±í2 Where, Vj = Design base shear due to impulsive component of the effective weight of tank and contents; = Ai X (Ws + Wf + Wi) [N] Vc = Design base shear due to convective component of the effective sloshing weight ; [N] = Ac X Wc [N] Wf = Weight of tank boUom = 2.3056 x 106 [N] Following table shows the result of overturning moment and base share. Table 4-6 Ove´Ùurning moment and base share ------- Overturning moment M [Nm] Base share V [N] ¡£BE 7.4637 X 108 5.5544 X 107 ¡¹ CLE 1.2601 X 109 9.3638 X 107 4.4 Necessity of Anchorage According to API 620 L.4.2.6 and API 650 E.6.2.1.1.1 , requirement of the anchorage is obtained from following equation¡® M J = D2{Wt Cl - O.3Av) + Wa} = 0.577 for OLE ¸£ ? .0 = 1.00 for CLE µè 1.54 ˼մ »þ¥ø ¾ß N¡± N¡± Where, J = Anchorage ratio, when J > 1.0, mechanically anchor is required for OLE J > 1.54, mechanically anchor is required for CLE Wt = Total weight of tank shell and appurtenances acting at base of shell [N/m] Ws ¥ðD Wa = Force resisting u ¹Ì i¾ß in annular region
17 15 of 28 = 99tbÆÒÆÛGe = 162,052 [N/m] for OLE = 158,595 [N/m] for CLE tb = Nominal thickness of the annular plate = 16.7 [mm] Ge = Effective specified gravity including vertical seismic effects = G(l - O.3Av) = 0.46 for OLE = G(l - O.3Av ) = 0.44 for CLE G = Design specific gravity of the liquid = 0.470 Fy = Minimum specified yield strength of annular plate = 586.1 [Mpaf1 Note 1) Refer to ¡°MECHANICAL ENGINEERING TANK DESIGN BASIS (LNG Storage Tanks) (IPC-5021544-12012-T-MV-TS-003)" Therefore anchorage is not necessary. 4.5 Compressive Stress on Shell Plate (a) Compressive stress According to API 650 E.6.2.2.1 , the maximum longitudinal shell compression stress at the botlom of shell for self-anchored tanks is calculated as follow. { _ . _ /. __ ." 1. 273M ¡¢1 o"c = (wtCl + O.3Av) + L;":;lYJ) ? ":,,. for OLE (J0.785) \O.607-0.18667[j 1¥é J 1000ts = 12.4 [MPa] Where, ts = Thickness of the botlom shell plate = 28.5 [mm] (b) Allowable stress According to API 650 E.6.2.2.3, The allowable stress Fc [MPa] for shell plate compression is calculated as follow. 1"\2 When GH ´Æ =162.1>44
17 16 of 28 Fc = 83 ¶ä = 30.3 [MPa] (c) Calculation result The following table shows the results. ------- Compressive stress [MPa] Allowable stress [MPa] Judge OLE 7.4 30.3 OK CLE 12.4 30.3 OK 4.6 Annular Plate Width According to API 650 E.6.2.1.1.2, the width of bottom annular plate that is measured radially inward from the shell ¡°L", should be equal to or greater than the value obtained as follows. I F .. L = 0.01723th I_J u ¡® IHGe = 1759 [mm] < 1770 [mm] (Design annular plate width) 4.7 Sliding Resistance OK According to API 650 E. 7.6, Total design base shear (horizontal force) V , should be equal to or smaller than the value Vs obtained as follows; Vs = ¥ì x (Ws + Wf + Wt ) X (1.0 - 0.3 x Av) Where, Vs = Allowable base shear [N] ´Ï = Maximum friction coefficient for tank sliding = tan30011.5 = 0.3849 for OLE (According to API620 L4.2.10) = tan300 = 0.5773 for CLE (According to API620 L4.3.3) Ws = Total weight of tank shell, appurtenances and a half of shell insulation = 1.5722 X 107 [N] Wf = Weight of tank bottom = 2.3056 x 106 [N] WT = Total weight of the tank content = 7.8871 x ? 08[N] Av = Vertical seismic acceleration = 0.087 [g] for OLE = 0.224 [g] for CLE
17 17 of 28 The flÀÌ lowing table shows the results. Table 4.7 Result of sliding resistance Total design base shear v'1 Allowable base shear Vs Judgment [N] [N] (V < Vs ) ¡£BE 5.5544 X 107 3.0240x108 OK CLE 9.3638 X 107 4.3443x108 ¡£K Note *1 : The value of V is shown in Table 4-6. 5. STIFFENER OF INNER TANK Gas pressure on both side of the shell is always balanced. But annular space is filled with perlite insulation, so the external pressure of perlite insulaiion acts on the inner tank shell when inner tank is empty. The stiffeners of inner tank are set to prevent inner tank from external buckling of inner tank shell. 5.1 Extemal Pressure In order to limit the exiernal pressure caused by the perlite powder, the resilient glass-wool blanket is installed on the outer surface of inner tank shell. The expected change of resilient glass-woÀÌ blanket thickness during the life-time of tank is shown in Fig 5-1. (a) During filling perlite powder and cool down When the annular space is filled with the perlite powder, the resilient glass-wool blanket is preCLEd by perlite powder. Then the inner tank is cooled down, the inner tank shell shrinks. The thermal displacement of inner tank by shrinkage dT [m] can be calculated by following equation; dT = a (Ta - TL) x R = 0.0771 [m] Where dT = Displacement of inner tank [m] ¥á = Coefficient of linear expansion of inner tank: 9.2x1 0.6 [1 r C] T a = Max. Ambient temperature; 40 [oC] TL = Operating temperature; -175 [oC]
Description | Symbol | Value | Units | Remark | No. | |
Occupancy Category | OC= | III | ASCE 7-10 Table 11.5-1 | 2 | ||
Importance Factor | I = | 1.25 | ASCE 7-10 Table 11.5-1 | 3 | ||
Soil Site Class | SC = | D | ASCE 7-10 Table 11.4-1, 11.4-2 | 4 | ||
Seismic Design Category | SDC= | D | ASCE 7-10 Table 11.6-2 | 5 | ||
Height from base to Tank Top | h = | 19.840 | m | Height of the base to tank top | 6 | |
Operating Weight | Wo = | 1480.2 | ton | ASCE 7-10 Section 15.4.3 | 7 | |
Spectral response acceleration parameter and Site Coefficients: | 8 | |||||
Spectral response accel. param.(0.2 sec) | SS = | 0.55 | g | ASCE 7-10 Fig. 22-1 to 22-14 | 9 | |
Spectral response accel. param.(1.0 sec) | S1 = | 0.22 | g | ASCE 7-10 Fig. 22-2 to 22-14 | 10 | |
Site Coefficients (Fa) | Fa = | 1.36 | ASCE 7-10 Table 11.4-1 | 11 | ||
Site Coefficients (Fv) | Fv = | 1.96 | ASCE 7-10 Table 11.4-2 | 12 | ||
Maximum Spectral Response Accelerations for Short and 1-Second Periods: | 13 | |||||
Max. Spectral accel. param(0.2 sec) | SMS = | 0.748 | g | SMS = Fa*SS | 14 | |
Max. Spectral accel. param(1.0 sec) | SM1 = | 0.431 | g | SM1 = Fv*S1 | 15 | |
Design Spectral Response Accelerations for Short and 1-Second Periods : | 16 | |||||
Design Spectral accel. param(0.2 sec) | SDS = | 0.499 | g | SDS = (2/3)¡¤Fa¡¤SS | 17 | |
Design Spectral accel. param(1.0 sec) | SD1 = | 0.287 | g | SD1 = (2/3)¡¤Fv¡¤S1 | 18 | |
Approx. Fundamental Period : | 19 | |||||
Period Coefficient | Ct = | 0.0724 | ASCE 7-10 Table 12.8-2 (Ct=0.0724) | 20 | ||
Fundamental Period, T = Ct * h^0.8 | T = | 0.7903 | sec | ASCE 7-10 Eqn. 12.8-7 | 21 | |
Seismic Design Coefficients and Factors : | 23 | |||||
Response Modification Coefficients | R = | 3.0 | R=3 (ASCE 7-10 Table 15.4-2 04a:Elevated tanks) | 24 | ||
CS = SDS / (R/I) | CS = | 0.151 | ASCE 7-10 12.8.1.1, Eqn. 12.8-2 | 25 | ||
CS_max = SD1 / [T*(R/I)] | CS_max= | 0.151 | Where For T ¡Â TL(4sec) ASCE 7-10 Eqn. 12.8-3 | 26 | ||
CS_min = Max(0.044*SDS*I, 0.03) | CS_min= | 0.030 | ASCE 7-10 Eqn. 15.4-1 (Suppl. 2) | 27 | ||
CS_used = CS_min ¡Â CS ¡Â CS_max | CS_used= | 0.151 | 28 | |||
CS_ASD = 0.7 * CS | CS_ASD= | 0.106 | ASCE 7-10 2.4.1 LOAD COMBINATION(ASD) 5,6,8 | 29 | ||
[New and Cold Condition] Base Shear and Over Turning Moment : [For DESIGN] | 31 | |||||
Operating Weight | Wo = | 1480.2 | ton | Tank Operating Weight | 32 | |
Base Shear, V_ASD = CS_ASD * Wo | V_ASD= | 156.5 | ton | ASCE 7-10 Eqn. 12.8-1 | 33 | |
Overturning Moment, Mo = h1 * V_ASD | Mo = | 1697.6 | ton-m | (PVDM 4th Edi. 217 page) | 34 | |
Height from ground level to Tank Equator Line | h1 = | 10.850 | m | 35 |
Description | Symbol | Value | Unit | Remark | No. |
RISK CATEGORY | OC = | III | 1 | ||
EXPOSURE CATEGORY | EC = | C | 2 | ||
DESIGN WIND SPEED (3sec. gust) | V = | 63.00 | m/sec | V = 226.80 km/hr | 3 |
Wind directionality factor | Kd = | 0.950 | 4 | ||
Velocity pressure exposure coefficient | Kz = | 1.032 | 5 | ||
Topographic factor | Kzt = | 1.00 | 6 | ||
Gust-effect factor | G = | 0.85 | 7 | ||
Force Coefficient for sphere | Cf = | 0.80 | 8 | ||
Tank Out-Diameter | Do= | 17160 | mm | 9 | |
Insulation Thickness | iThk= | 0 | mm | 10 | |
Tank Out-diameter plus Insulation Thickness | OD= | 17.16 | m | OD = Do + 2 * iThk | 11 |
Sectional Area of Sphere Tank (Incl. Insulation Thick.) | As = | 231.27 | m©÷ | As=1.2*(¥ð*17.162/4) (20% Up) | 12 |
Sectional Area of etc.(Column & Brace,Stringer, P/F) | Ac = | 139.89 | m©÷ | 13 | |
Total Projection Area (Af = As + Ac) | Af = | 371.16 | m©÷ | Af = As + Ac | 14 |
Wind Velocity Pressure qz=0.613¡¤Kz¡¤Kzt¡¤Kd¡¤V©÷/ 9.80665 (kg/m©÷) | qz = | 243.23 | kg/m©÷ | 15 | |
Height form ground level to Tank Equator Line | H = | 11.55 | m | 16 | |
Design Wind Force, Fw = qz ¡¤ G ¡¤ Cf ¡¤ Af | Fw = | 61.4 | Ton | 17 | |
Base Shear Force Vw = Fw | Vw = | 61.4 | Ton | 18 | |
Overturning Moment Mw = Vw * H | Mw = | 709.2 | Ton-m | 19 |
1. ÁöÁø°è¼ö Seismic Data ( KGS GC203 2018³â + KBC 2016 ) | |||||||
Description | Symbol | ºØ±«¹æÁö | ±â´É¼öÇà | Units | Remark | ||
Áß¿äµµ µî±Þ : GC203 Ç¥2.2.1.2.2 | Ư | Ư | 2 | ||||
³»Áø µî±Þ : GC203 Ç¥2.2.3.1 ³»Áøµî±Þ ºÐ·ù | ³»Áø Ư | ³»Áø Ư | 3 | ||||
- ÀçÇöÁÖ±â : GC203 Ç¥2.4 °¡½º½Ã¼³ ³»Áø¼º´É¸ñÇ¥ | RYEAR = | 2400 | 200 | ³â | 4 | ||
- À§Çèµµ°è¼ö ( I ) : GC203 Ç¥2.5.3.2 À§Çèµµ °è¼ö | I = | 2.00 | 0.73 | 5 | |||
ÅÊÅ© ¼³Ä¡ Áö¿ª : GC203 Ç¥2.5.3.1 ÁöÁø±¸¿ª | Áö¿ª = | ÀÎõ | ÀÎõ | 6 | |||
Áö¿ª °è¼ö ( Z ) : GC203 Ç¥2.5.3.1 ÁöÁø±¸¿ª°è¼ö(Z) | Z = | 0.11 | 0.11 | g | 7 | ||
À¯È¿¼öÆòÁö¹Ý°¡¼Óµµ S = Z * I | S = | 0.2200 | 0.0803 | g | 8 | ||
Áö¹ÝÀÇ ºÐ·ù : Ç¥.2.5.5 Áö¹ÝÀÇ ºÐ·ù ( Ground Type ) | SOIL = | S4 | S4 | 9 | |||
´ÜÁÖ±â ÁõÆø°è¼ö : Áö¹ÝÁõÆø °è¼ö (GC203 Ç¥ 2.5.6.1.2) | Fa = | 1.3600 | 1.6000 | 10 | |||
ÀåÁÖ±â ÁõÆø°è¼ö : Áö¹ÝÁõÆø °è¼ö (GC203 Ç¥ 2.5.6.1.2) | Fv = | 1.9600 | 2.2000 | g | 11 | ||
À¯È¿ Áö¹Ý°¡¼Óµµ (EGA = Fa ¡¤ S) | EGA = Fa ¡¤ S | 0.2992 | 0.1092 | g | 12 | ||
2. Ç¥Áؼ³°èÀÀ´ä½ºÆåÆ®·³ Áö¹Ý°¡¼Óµµ °è»ê | |||||||
´ÜÁֱ⠼³°è ½ºÆåÆ®·³ °¡¼Óµµ, Sa(Max) | 2.5¡¤Fa¡¤S= | 0.748 | 0.321 | g | 15 | ||
1 sec. ¼³°è ½ºÆåÆ®·³ °¡¼Óµµ, Sa(1) | Fv¡¤S = | 0.431 | 0.177 | sec | 16 | ||
ÀüÀÌÁÖ±âÀÇ °è»ê : | To = 0.2¡¤Ts = | 0.115 | 0.110 | sec | 17 | ||
¡¡KGS GC203(2018) ±×¸² 2.5.6.1.2 | Ts=Fv/(2.5¡¤Fa) = | 0.576 | 0.550 | sec | 18 | ||
¡¡¼³°èÀÀ´ä½ºÆåÆ®·³ ÀüÀÌÁÖ±â, GC203 Ç¥ 2.5.6.1.1(1) | TL = | 3.000 | 3.000 | sec | 19 | ||
¹ÝÀÀ¼öÁ¤°è¼ö Response Modification Factor ( KBC 2016 - Ç¥ 0306.11.1 ) | R = | 3.0 | 1.0 | 20 | |||
Ç¥Áؼ³°èÀÀ´ä½ºÆåÆ®·³ Áö¹Ý°¡¼Óµµ Sa(T) = Sa(Max) | Sa(T) = | 0.748 | 0.321 | g | 21 | ||
3. ±¸Á¶¹°ÀÇ °íÀ¯Áøµ¿¼öÀÇ °è»ê, Fundamental Period Calculation, (T) (°íÀ¯Áֱ⠻êÁ¤¹ý : KBC 0306.5.4 ) | |||||||
°ÇÃ๰ÀÇ ÃÖ»óÃþ±îÁöÀÇ ³ôÀÌ | Hn = | 11.55 | 11.55 | m | 22 | ||
ö°ñ ¸ð¸àÆ®°ñÁ¶ °è¼ö | Ct = | 0.085 | 0.085 | sec | 23 | ||
°íÀ¯Áֱ⠰è»ê ( KBC 0306.5.4 ), Structural Period of Vibration T = Ct¡¤Hn(3/4) | T = | 0.533 | 0.533 | sec | 24 | ||
4. ÅÊÅ©ÀÇ ³»Áø¼³°è °¡¼ÓµµÀÇ °è»ê ( Design spectrum acceleration ) | |||||||
0¡¡¡Â T ¡Â To , [ X ] Sd(T) = Fa¡¤S (1+1.5¡¤T/To) / R | Sd(T) = | N/A | N/A | g | 28 | ||
To ¡Â T ¡Â Ts , [ O ] Sd(T) = 2.5 ¡¤ Fa ¡¤ S / R | Sd(T) = | 0.249 | 0.321 | g | 29 | ||
Ts ¡Â T ¡Â TL , [ X ] Sd(T) = (Fv ¡¤ S / T) / R | Sd(T) = | N/A | N/A | g | 30 | ||
¡¡¡¡TL <¡¡T , [ X ] Sd(T) = Fv ¡¤ S * (TL / T2) / R | Sd(T) = | N/A | N/A | g | 31 | ||
ÅÊÅ©ÀÇ ³»Áø¼³°è °¡¼Óµµ, Sd(T) = Sa(T) / R, Cs = Sd(T) | Cs = Sd(T) = | 0.249 | 0.321 | g | 32 | ||
5. ÅÊÅ© ¹Ø¸é Àü´Ü·Â, Àüµµ¸ð¸àÆ® ÀÇ °è»ê Base Shear and Overturning Moment | |||||||
Tank Inside Diameter | D = | 16.840 | 16.840 | m | 34 | ||
Height from ground level to Tank Equator Line | h1 = | 10.92 | 10.92 | m | 35 | ||
Tank Operating Weight | Wo = | 1735.6 | 1735.6 | Ton | 36 | ||
Design Base Shear Force¡¡V = Cs * Wo | V = | 432.2 | 557.1 | Ton | 37 | ||
Overturning Moment Mo = h1 * V | Mo = | 4719.6 | 6083.5 | Ton-m | 38 |
Sa[g] : Åä»çÁö¹Ý ¼öÆòÁö¹Ý¿îµ¿ÀÇ °¡¼Óµµ | ||
Sd[g] : ±¸Á¶¹°(ÅÊÅ©)ÀÇ ³»Áø¼³°è °¡¼Óµµ ( Seismic Design Spectral Acceleration = Cs) | ||
Description | Symbol | Value | Units | Remark | No. | |
SEISMIC DATA | 1 | |||||
SEISMIC ZONE | ZONE= | 2B | TABLE 16-I | 2 | ||
SEISMIC ZONE FACTOR | Z = | 0.2 | TABLE 16-I | 3 | ||
Soil Profile Type | SOIL= | SC | TABLE 16-J | 4 | ||
Na For Zone 4 only | Na= | N/A | TABLE 16-S(Na:1.0~1.5) | 5 | ||
Nv For Zone 4 only | Nv= | N/A | TABLE 16-T(Nv:1.0~2.0) | 6 | ||
SEISMIC COEFFICIENT | Ca= | 0.24 | TABLE 16-Q | 7 | ||
SEISMIC COEFFICIENT | Cv= | 0.32 | TABLE 16-R | 8 | ||
Importance Factor | I = | 1.25 | TABLE 16-K | 9 | ||
Factor for Tank (R=2.2) | R = | 2.2 | TABLE 16-P Non-building Structure | 10 | ||
o Calculation of Structure Period (T) : | 12 | |||||
Height of the base to Top Platform of Sphere Tank | hn = | 19.9 | m | 13 | ||
Numerical Constant (Steel moment-resisting frames) | Ct = | 0.0853 | 14 | |||
Fundamental period T = Ct * hn(3/4) | T = | 0.8037 | sec. | (Eq. 30-8) | 15 | |
o Calculation of Horizontal Seismic Factor ( CS = Sd ), Sd : Design Spectral Acceleration | 17 | |||||
Base Shear coefficient CS_1=Max[Cv*I/(R*T),0.56Ca*I] | CS_1= | 0.226 | Max( Eq(30-4), (34-2) ] | 18 | ||
Max. Base Shear coefficient CS_2=2.5*Ca*I/R | CS_2= | 0.341 | Eq (30-5) | 19 | ||
Min. Base Shear coefficient CS_3=0.11Ca*I | CS_3= | 0.033 | Eq (30-6) | 20 | ||
Base Shear for Zone 4 only CS_4=0.8Z*Nv*I/R | CS_4= | N/A | Eq (30-7) for Zone 4 | 21 | ||
Applicate Seismic Factor | CS = | 0.226 | CS = Min(CS_1, CS_2) | 22 | ||
ASD Horizontal Seismic Factor (UBC-97 1612.3.1) CS_ASD = CS / 1.4 | CS(ASD)= | 0.161 | UBC97 1612.3.1 Load Combination(ASD) | 23 | ||
Base Shear and Over Turning Moment : | 24 | |||||
Tank Operating Weight | Wo = | 3967.5 | Ton | 25 | ||
Design Base Shear V = CS_ASD * W | V = | 638.8 | Ton | 26 | ||
Overturning Moment Mo= h1 * V | Mo = | 10061.1 | Ton-m | 27 | ||
Height from ground level to Tank Equator Line | h1 = | 15.750 | m | 28 |