HTML Ư¼ö¹®ÀÚ ¸®½ºÆ® (¡î ¡î ¡î ¥ð ©ª £í©÷£í©ø £í©ù, ©ö ©÷ ©ø ©ù, ©û©ü©ý©þ, ¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ¡É ¢º ¤º ¡îax2 + bx + c

½ÃÀ۽ð£ = [2024-12-05 09:08:42.0382]
req=[org.apache.catalina.connector.RequestFacade@71c897ab]
res=[org.apache.catalina.connector.ResponseFacade@285d95e9]
conn=[com.mysql.jdbc.JDBC4Connection@3da1b0e]
cdAry[0] = []
cdAry[1] = [TABLE 1.1) String uAry[][]
query[0] = Select sid, SYMBOL, UNIT, DESCR, kid From S_DATA Where kid=5 and sid=0
sidSYMBOLUNITDESCRkid
0PUnitkg/cm©÷0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ |5

]
cdAry[2] = [TABLE 2.1) String bAry[][] = S_RESULT
query[1] = Select sid, DESCR, UNIT, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,REMARK From S_RESULT Where kid=5 and sid<100 Order By sid
sidDESCRUNITSYMBOLT1T2T3T4T5T6T7T8T9T10REMARK
0Nominal Capacity [°øĪ¿ë·®]m©øV_nom3648.3706205.8803648.3703882.4204126.2703882.4203648.3703882.4204126.2703882.420 
1Storage Capacity [ÀúÀå¿ë·®]m©øV_sto3514.3105651.7002319.9803516.1303693.1503488.1602319.9803516.1303693.1503488.160 
2Vapor Space Capacitym©øV_hil134.060554.1801328.390366.290433.120394.2601328.390366.290433.120394.260 
3Storage Capacity Ratio%R_Sto96.33091.07063.59090.57089.50089.84063.59090.57089.50089.840 
4Vapor Space Ratio%R_vapor3.6708.93036.4109.43010.50010.16036.4109.43010.50010.160 
10A. WEIGHT SUMMARY   
11SHELL PLATETonWs399.185677.164395.221389.995411.047389.995450.777347.628366.924314.690 
12UPPER COLUMN (PLATE)TonWuc13.54218.74413.53513.65913.81213.65913.55013.64413.79713.652 
13LOWER COLUMN (PIPE)TonWc26.24636.67932.56026.76327.24926.14832.54826.77527.26226.154 
14CROSS BRACE (PIPE)TonWb22.43932.22626.64322.88223.31722.48326.63822.89323.32722.487 
15ROOF PLATFORM & STAIRWAYTonWr23.62133.01129.30424.08724.52423.53329.29324.09824.53623.539 
16WATER SPRAY AND ATTACHMENTTonWsp20.99729.34326.04821.41021.79920.91826.03821.42021.81020.923 
17MANHOLE & NOZZLETonWn16.30017.40016.30016.30016.30016.30016.30016.30016.30016.300 
18INTERNAL LADDER & ATTACHMENTTonWi12.86113.72912.86112.86112.86112.86112.86112.86112.86112.861 
19ANCHOR BOLT/NUTTonWa3.8163.8163.8163.8163.8163.8163.8163.8163.8163.816 
20COLUMN FIRE PROOFINGTonWin40.30050.40040.30040.30040.30040.30040.30040.30040.30040.300 
21BLANK 1TonW_1 
22BLANK 2TonW_2 
23BLANK 3TonW_3 
24BLANK 4TonW_4 
25BLANK 5TonW_5 
26Lower-Column O.DmmDcol812.800914.400812.800812.800812.800812.800812.800812.800812.800812.800 
27Lower-Column ThicknessmmTcol13.00014.00013.00013.00013.00013.00013.00013.00013.00013.000 
28Cross-Brace O.DmmDbrace273.100323.500273.100273.100273.100273.100273.100273.100273.100273.100 
29Cross-Brace ThicknessmmTbrace15.10015.60015.10015.10015.10015.10015.10015.10015.10015.100 
30¡á EMPTY WEIGHT (1 Unit)TonWe579.310912.510596.590572.070595.030570.010652.120529.730550.930494.720We = W(1)+ .. +W(10)
31B. LOADING DATA   
32¡¡CONTENTS WEIGHT (at Operating)TonWc1584.9502972.7901220.3102246.8102359.9202096.3801220.3102246.8102359.9202096.380Wc = Vsto * S.G
33HYDROSTATIC TEST WATER WEIGHTTonWt3648.3706205.8803648.3703882.4204126.2703882.4203648.3703882.4204126.2703882.420Wt = Vnom * 1.0
34¡¡1) VERTICAL LOAD   
35EMPTY WEIGHTTonWe579.310912.510596.590572.070595.030570.010652.120529.730550.930494.720We = W(1)+ .. +W(10)
36OPERATING WEIGHTTonWo2164.2603885.3001816.9002818.8802954.9502666.3901872.4302776.5402910.8502591.100Wo = We + Wc
37HYDROSTATIC TEST WEIGHTTonWh4227.6807118.3904244.9604454.4904721.3004452.4304300.4904412.1504677.2004377.140Wh = We + Wt
38¡¡2) HORIZONTAL LOAD   
39SEISMIC FACTOR (CS=0.25 Fix) CS0.2500.2500.2500.2500.2500.2500.2500.2500.2500.250 
40SEISMIC LOAD (Base Shear) Vs = CS x WoTonVs541.070971.330454.230704.720738.740666.600468.110694.140727.710647.780Vs = CS x Wo
41WIND LOAD (Base Shear)TonVw 

]
cdAry[3] = [TABLE 3.1) String cAry[][] = S_DETAIL, cAry.length = [36] cAry[0].length = [12]
query[2] = Select sid, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 From S_DETAIL Where kid=5 and sid<100 Order By sid
sidSYMBOLT1T2T3T4T5T6T7T8T9T10
1TNO10-TK-7210AB10-TK-731010-TK-732010-TK-7400ABC10-TK-7420ABC10-TK-7440AB10-TK-732010-TK-7400ABC10-TK-7420ABC10-TK-7440AB
2CODEDIV. 2DIV. 2DIV. 2DIV. 1DIV. 1DIV. 1DIV. 2DIV. 1DIV. 1DIV. 21
3CONTENTEthyleneHP PropyleneHP Off-Spec PropyleneMixed C4s1,3 ButadieneButene-1HP Off-Spec PropyleneMixed C4s1,3 ButadieneButene-1
4SG0.4510.5260.5260.6390.6390.6010.5260.6390.6390.601
5MATLSA537-CL2SA537-CL2SA537-CL2SA537-CL2SA537-CL2SA537-CL2SA537-CL1SA537-CL1SA537-CL1SA537-CL1
6DTEMP65656565656565656565
7Sd230.00230.00230.00158.00158.00158.00201.00138.00138.00161.00
8Di19100228001910019500199001950019100195001990019500
9CA1.51.51.51.51.51.51.51.51.51.5
10HT12550144001460012750129501255014600127501295012550
11HHLL16900186001130015800159001565011300158001590015650
12HLL16500180001110015400158001520011100154001580015200
13LLL1700205011002950280016001100295028001600
14LLLL1000100010002400230015001000240023001500
15Pi20202066620666
16Pe1.0332271.0332271.0332271.0332271.0332271.0332271.0332271.0332271.0332271.033227
17MDMT-45-45-45-12-12-12-45-12-12-12
18E1.01.01.01.01.01.01.01.01.01.0
19TQTY1.01.01.01.01.01.01.01.01.01.0
20CQTY12121212121212121212
21SQTY8888888888
22CACB1.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.51.5 / 0.5
23L64.050.055.065.070.075.080.085.090.0100.0
24tdReq43.8752.6143.5322.7223.1822.5149.6125.8026.3222.13
25twReq36.3343.8936.3312.5012.8112.5043.7215.0415.4115.40
26tmReq33.2340.1933.2312.5012.8112.5039.9815.0415.4114.25
27teReq16.1818.8516.340.3641.1440.3614.4535.9736.6932.79
28tTops43.551.043.541.542.041.549.037.037.533.5
29tMids44.553.544.041.542.041.550.537.037.533.5
30tBtms45.053.544.541.542.041.550.537.037.533.5
31tUsed45.053.544.541.542.041.550.537.037.533.5
32MSGOKOKOKOKOKOKOKOKOKOK
33tdCyo86.43103.9485.7444.0444.9543.6297.9650.2251.2742.81
34ttCyt72.887.9672.825.0425.6525.0487.6430.1330.8730.82
35tCyli87.5105.086.545.046.044.599.051.052.044.0

]
cdAry[4] = [[cAry, dAry] TANK STRENGTH CALCULATION SHEET, uid= [0], units= [kg/cm©÷]
11TANK NO. (Max. 40 Char.)TNO =10-TK-7210AB
0
10-TK-7310
0
10-TK-7320
0
10-TK-7400ABC
0
10-TK-7420ABC
0
10-TK-7440AB
0
10-TK-7320
0
10-TK-7400ABC
0
10-TK-7420ABC
0
10-TK-7440AB
0
22VESSEL DESIGN CODE (ASME SEC. VIII, Div. 1,2)CODE =DIV. 2
2
DIV. 2
2
DIV. 2
2
DIV. 1
1
DIV. 1
1
DIV. 1
1
DIV. 2
2
DIV. 1
1
DIV. 1
1
DIV. 21
1
33STORAGE LIQUID NAMECONTENT =Ethylene
0
HP Propylene
0
HP Off-Spec Propylene
0
Mixed C4s
0
1,3 Butadiene
0
Butene-1
0
HP Off-Spec Propylene
0
Mixed C4s
0
1,3 Butadiene
0
Butene-1
0
44DESIGN SPECIFIC GRAVITYSG =0.451
0.451
0.526
0.526
0.526
0.526
0.639
0.639
0.639
0.639
0.601
0.601
0.526
0.526
0.639
0.639
0.639
0.639
0.601
0.601
55MATERIAL OF SHELL PLATEMATL =SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA537-CL1
0
SA537-CL1
0
SA537-CL1
0
SA537-CL1
0
66DESIGN TEMPERATURE (Max.)DTEMP =¡É65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
65
77ALLOWABLE STRESS at Deisin(Operating)Sd =MPa230.00
230
230.00
230
230.00
230
158.00
158
158.00
158
158.00
158
201.00
201
138.00
138
138.00
138
161.00
161
88TANK INSIDE DIAMETERDi =mm19100
19100
22800
22800
19100
19100
19500
19500
19900
19900
19500
19500
19100
19100
19500
19500
19900
19900
19500
19500
99CORROSION ALLOWANCE (SHELL)CA =mm1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1010TANK EQUATOR LEVEL (FROM GROUND)HT =mm12550
12550
14400
14400
14600
14600
12750
12750
12950
12950
12550
12550
14600
14600
12750
12750
12950
12950
12550
12550
1111(SHELL µÎ²²°è»ê ³ôÀÌ) HIGH HIGH LIQUID LEVELHHLL =mm16900
16900
18600
18600
11300
11300
15800
15800
15900
15900
15650
15650
11300
11300
15800
15800
15900
15900
15650
15650
1212(Storage ¿ë·®°è»ê ¾×³ôÀÌ) HIGH LIQUID LEVELHLL =mm16500
16500
18000
18000
11100
11100
15400
15400
15800
15800
15200
15200
11100
11100
15400
15400
15800
15800
15200
15200
1313LOW LIQUID LEVELLLL =mm1700
1700
2050
2050
1100
1100
2950
2950
2800
2800
1600
1600
1100
1100
2950
2950
2800
2800
1600
1600
1414LOW LOW LIQUID LEVELLLLL =mm1000
1000
1000
1000
1000
1000
2400
2400
2300
2300
1500
1500
1000
1000
2400
2400
2300
2300
1500
1500
1515DESIGN INTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pi =
kg/cm©÷
kPa
20
1961.33
20
1961.33
20
1961.33
6
588.399
6
588.399
6
588.399
20
1961.33
6
588.399
6
588.399
6
588.399
1616DESIGN EXTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pe =
kg/cm©÷
kPa
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1717MIN.DESIGN METAL TEMPERATUREMDMT =¡É-45
-45
-45
-45
-45
-45
-12
-12
-12
-12
-12
-12
-45
-45
-12
-12
-12
-12
-12
-12
1818SHELL JOINT EFFICIENCYE =1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1919TANK QUANTITY (ÅÊÅ©¼ö·® Á÷Á¢ÀÔ·Â)TQTY =Unit1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
1.0
1
2020COLUMN QUANTITY (¼ö·®ÀÚµ¿°è»ê)CQTY =EA12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
2121SHELL SEGMENT QUANTITY (¼ö·®ÀÚµ¿°è»ê)SQTY =EA8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2222CORROSION ALLOWANCE (Column/Brace)CACB =mm1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
1.5 / 0.5
0
2323Cylinderical Vessel Longitudinal Length
ex) Mounded Bullet Vessel(Cylinderical) Length
L =(m)64.0
64
50.0
50
55.0
55
65.0
65
70.0
70
75.0
75
80.0
80
85.0
85
90.0
90
100.0
100
2424Req'd Thickness under Operating Cond. (Pi+Ps)tdReq =mm43.87
43.87
52.61
52.61
43.53
43.53
22.72
22.72
23.18
23.18
22.51
22.51
49.61
49.61
25.80
25.8
26.32
26.32
22.13
22.13
2525Req'd Thickness under Hydro-test (MAWP) (Pt)twReq =mm36.33
36.33
43.89
43.89
36.33
36.33
12.50
12.5
12.81
12.81
12.50
12.5
43.72
43.72
15.04
15.04
15.41
15.41
15.40
15.4
2626Req'd Thickness under Hydro-test (MAP) (Pt)tmReq =mm33.23
33.23
40.19
40.19
33.23
33.23
12.50
12.5
12.81
12.81
12.50
12.5
39.98
39.98
15.04
15.04
15.41
15.41
14.25
14.25
2727Req'd Thickness under External Pressue (Pe)teReq =mm16.18
16.18
18.85
18.85
16.3
16.3
40.36
40.36
41.14
41.14
40.36
40.36
14.45
14.45
35.97
35.97
36.69
36.69
32.79
32.79
2828¡¡¡¡¡¡¡Ü Top Shell Used ThicknesstTops =mm43.5
43.5
51.0
51
43.5
43.5
41.5
41.5
42.0
42
41.5
41.5
49.0
49
37.0
37
37.5
37.5
33.5
33.5
2929¡¡¡¡¡¡¡Ü Equator Used ThicknesstMids =mm44.5
44.5
53.5
53.5
44.0
44
41.5
41.5
42.0
42
41.5
41.5
50.5
50.5
37.0
37
37.5
37.5
33.5
33.5
3030¡¡¡¡¡¡¡Ü Bottom Shell Used ThicknesstBtms =mm45.0
45
53.5
53.5
44.5
44.5
41.5
41.5
42.0
42
41.5
41.5
50.5
50.5
37.0
37
37.5
37.5
33.5
33.5
3131¡¡¡¡¡¡¡Ü Max. (Spherical) Used ThicknesstUsed =mm45.0
45
53.5
53.5
44.5
44.5
41.5
41.5
42.0
42
41.5
41.5
50.5
50.5
37.0
37
37.5
37.5
33.5
33.5
3232If (tUsed ¡Â 64mm) then Accetable
Else (tUsed>64mm) Sd ReSelect
MSG =OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
3333(¡Ü Cylinder) Req'd Thickness under Oper. (Pi+Ps)tdCyo =mm86.43
86.43
103.94
103.94
85.74
85.74
44.04
44.04
44.95
44.95
43.62
43.62
97.96
97.96
50.22
50.22
51.27
51.27
42.81
42.81
3434(¡Ü Cylinder) Req'd Thickness under Hydrotest(Pt)ttCyt =mm72.8
72.8
87.96
87.96
72.8
72.8
25.04
25.04
25.65
25.65
25.04
25.04
87.64
87.64
30.13
30.13
30.87
30.87
30.82
30.82
3535¡¡¡¡¡¡¡Ü Max. (Cylinder) Used ThicknesstCyli =mm87.5
87.5
105.0
105
86.5
86.5
45.0
45
46.0
46
44.5
44.5
99.0
99
51.0
51
52.0
52
44.0
44

cAry[0].length=[12][12] END OF MYSQL_SPH_DATAREAD(), cAry.length = [36] dAry.length = [36]
]
cdAry[5] = []
rv=[sphereColumnSTD.jsp sph.WLEDING_LENGTH_CALC();

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,100 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.243.52733.58200.617,27216,40143.52733.58200.637271.9421815.8866.863.887
#2, 016.424.643.52733.57534.2214,544©ª795130,1375,386
#3, 316.44143.52733.59841.6426,183©ª12530.739,36643.52733.59060.646545.6526182.61475.7276.675
#4, 4458644.02720.87500.622135,572©ª19053.559,858165,01244.02720.87550226162.38135572.36541.31392.508
#5, 55313944.52727.58912.322165,040©ª19100194,34844.52727.58912.3227501.82165040.07873.65472.454
#6, 816.4155.445.02733.59841.6427,085©ª12530.739,36645.02733.58860.646771.3627085.41475.7276.675
#7, 916.4171.845.02733.57534.2215,045©ª795130,1375,38645.02733.58200.637522.6922568.1866.863.887
#8, 98.218045.02733.58200.617,52316,401
Total Quantity and Shell Weight58398,264kg231.7 (m)370.1 (m)58398264.2191001146.086
Total Site Weleding length (m)601.8 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 22,800 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 07751.02785.58356.618,85316,71351.02785.58356.638853.2126559.6757.1866.341
#2, 0142151.02785.57845.7217,706©ª8170.831,3835,176
#3, 3143551.02785.510271.1432,562©ª13077.541,08451.02785.59447.248140.4232561.71304.4981.333
#4, 4528752.02751.210346.326255,596©ª22768.871,530269,00452.02751.210390269830.60255595.78741.7626.153
#5, 55814553.52754.91161126298,864©ª22800300,04353.52754.9116112611494.78298864.39934.96711.624
#6, 81415953.52785.510271.1434,158©ª13077.541,08453.52785.59247.248539.4634157.81304.4981.333
#7, 91417353.52785.57845.7218,574©ª8170.831,3835,17653.52785.58356.639287.1927861.6757.1866.341
#8, 9718053.52785.58356.619,28716,713
Total Quantity and Shell Weight66675,601kg249.9 (m)579.4 (m)66675600.6228001633.125
Total Site Weleding length (m)829.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,100 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.243.52733.58200.617,27216,40143.52733.58200.637271.9421815.8866.863.887
#2, 016.424.643.52733.57534.2214,544©ª795130,1375,386
#3, 316.44143.52733.59841.6426,183©ª12530.739,36643.52733.59060.646545.6526182.61475.7276.675
#4, 4458643.52720.87500.622134,032©ª19053.559,858165,01243.52720.87550226092.35134031.76541.31392.508
#5, 55313944.52727.58912.322165,040©ª19100194,34844.52727.58912.3227501.82165040.07873.65472.454
#6, 816.4155.444.52733.59841.6426,784©ª12530.739,36644.52733.58860.646696.1226784.51475.7276.675
#7, 916.4171.844.52733.57534.2214,878©ª795130,1375,38644.52733.58200.637439.1122317.3866.863.887
#8, 98.218044.52733.58200.617,43916,401
Total Quantity and Shell Weight58396,172kg231.7 (m)370.1 (m)58396171.9191001146.086
Total Site Weleding length (m)601.8 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,500 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.230.02790.88372.315,22716,74530.02790.88372.335227.3915682.2884.9566.591
#2, 016.424.630.02790.87692210,455©ª8117.530,7685,498
#3, 316.44130.02790.810047.7418,821©ª12793.240,19130.02790.89246.144705.2918821.21506.6379.920
#4, 4458630.02777.87657.62296,348©ª19452.561,112168,46830.02777.87700224379.4396347.56678.29409.119
#5, 55313930.02784.69098.922115,972©ª19500198,41830.02784.69098.9225271.45115972.08038.55492.450
#6, 816.4155.430.02790.810047.7418,821©ª12793.240,19130.02790.89046.144705.2918821.21506.6379.920
#7, 916.4171.830.02790.87692210,455©ª8117.530,7685,49830.02790.88372.335227.3915682.2884.9566.591
#8, 98.218030.02790.88372.315,22716,745
Total Quantity and Shell Weight58281,326kg236.5 (m)377.9 (m)58281326.2195001194.591
Total Site Weleding length (m)614.4 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,900 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.230.528488544.115,53517,08830.528488544.135534.8716604.6903.169.352
#2, 016.424.630.528487849.8211,070©ª828431,3995,611
#3, 316.44130.5284810253.8419,928©ª13055.641,01530.528489431.744981.9019927.61537.5483.231
#4, 4458630.52834.87814.722102,013©ª19851.562,365171,92430.52834.87860224636.97102013.36815.28426.076
#5, 55313930.52841.79285.522122,792©ª19900202,48830.52841.79285.5225581.43122791.58203.44512.860
#6, 816.4155.430.5284810253.8419,928©ª13055.641,01530.528489231.744981.9019927.61537.5483.231
#7, 916.4171.830.528487849.8211,070©ª828431,3995,61130.528488544.135534.8716604.6903.169.352
#8, 98.218030.528488544.115,53517,088
Total Quantity and Shell Weight58297,869kg241.4 (m)385.6 (m)58297869.1199001244.102
Total Site Weleding length (m)627 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,500 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.230.02790.88372.315,22716,74530.02790.88372.335227.3915682.2884.9566.591
#2, 016.424.630.02790.87692210,455©ª8117.530,7685,498
#3, 316.44130.02790.810047.7418,821©ª12793.240,19130.02790.89246.144705.2918821.21506.6379.920
#4, 4458630.02777.87657.62296,348©ª19452.561,112168,46830.02777.87700224379.4396347.56678.29409.119
#5, 55313930.02784.69098.922115,972©ª19500198,41830.02784.69098.9225271.45115972.08038.55492.450
#6, 816.4155.430.02790.810047.7418,821©ª12793.240,19130.02790.89046.144705.2918821.21506.6379.920
#7, 916.4171.830.02790.87692210,455©ª8117.530,7685,49830.02790.88372.335227.3915682.2884.9566.591
#8, 98.218030.02790.88372.315,22716,745
Total Quantity and Shell Weight58281,326kg236.5 (m)377.9 (m)58281326.2195001194.591
Total Site Weleding length (m)614.4 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,100 (m), Material SA537-CL1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.249.02733.58200.618,19116,40149.02733.58200.638191.3824574.1866.863.887
#2, 016.424.649.02733.57534.2216,383©ª795130,1375,386
#3, 316.44149.02733.59841.6429,493©ª12530.739,36649.02733.59060.647373.2629493.01475.7276.675
#4, 4458649.52720.87500.622152,519©ª19053.559,858165,01249.52720.87550226932.67152518.86541.31392.508
#5, 55313950.52727.58912.322187,293©ª19100194,34850.52727.58912.3228513.30187292.67873.65472.454
#6, 816.4155.450.52733.59841.6430,396©ª12530.739,36650.52733.58860.647598.9730395.91475.7276.675
#7, 916.4171.850.52733.57534.2216,884©ª795130,1375,38650.52733.58200.638442.1425326.4866.863.887
#8, 98.218050.52733.58200.618,44216,401
Total Quantity and Shell Weight58449,601kg231.7 (m)370.1 (m)58449600.9191001146.086
Total Site Weleding length (m)601.8 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,500 (m), Material SA537-CL1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.230.02790.88372.315,22716,74530.02790.88372.335227.3915682.2884.9566.591
#2, 016.424.630.02790.87692210,455©ª8117.530,7685,498
#3, 316.44130.02790.810047.7418,821©ª12793.240,19130.02790.89246.144705.2918821.21506.6379.920
#4, 4458630.02777.87657.62296,348©ª19452.561,112168,46830.02777.87700224379.4396347.56678.29409.119
#5, 55313930.02784.69098.922115,972©ª19500198,41830.02784.69098.9225271.45115972.08038.55492.450
#6, 816.4155.430.02790.810047.7418,821©ª12793.240,19130.02790.89046.144705.2918821.21506.6379.920
#7, 916.4171.830.02790.87692210,455©ª8117.530,7685,49830.02790.88372.335227.3915682.2884.9566.591
#8, 98.218030.02790.88372.315,22716,745
Total Quantity and Shell Weight58281,326kg236.5 (m)377.9 (m)58281326.2195001194.591
Total Site Weleding length (m)614.4 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,900 (m), Material SA537-CL1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.230.528488544.115,53517,08830.528488544.135534.8716604.6903.169.352
#2, 016.424.630.528487849.8211,070©ª828431,3995,611
#3, 316.44130.5284810253.8419,928©ª13055.641,01530.528489431.744981.9019927.61537.5483.231
#4, 4458630.52834.87814.722102,013©ª19851.562,365171,92430.52834.87860224636.97102013.36815.28426.076
#5, 55313930.52841.79285.522122,792©ª19900202,48830.52841.79285.5225581.43122791.58203.44512.860
#6, 816.4155.430.5284810253.8419,928©ª13055.641,01530.528489231.744981.9019927.61537.5483.231
#7, 916.4171.830.528487849.8211,070©ª828431,3995,61130.528488544.135534.8716604.6903.169.352
#8, 98.218030.528488544.115,53517,088
Total Quantity and Shell Weight58297,869kg241.4 (m)385.6 (m)58297869.1199001244.102
Total Site Weleding length (m)627 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 19,500 (m), Material SA537-CL1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 08.28.228.02790.88372.314,87916,74528.02790.88372.334878.9014636.7884.9566.591
#2, 016.424.628.02790.8769229,758©ª8117.530,7685,498
#3, 316.44128.02790.810047.7417,566©ª12793.240,19128.02790.89246.144391.6017566.41506.6379.920
#4, 4458628.02777.87657.62289,924©ª19452.561,112168,46828.02777.87700224087.4789924.46678.29409.119
#5, 55313928.02784.69098.922108,241©ª19500198,41828.02784.69098.9224920.02108240.58038.55492.450
#6, 816.4155.428.02790.810047.7417,566©ª12793.240,19128.02790.89046.144391.6017566.41506.6379.920
#7, 916.4171.828.02790.8769229,758©ª8117.530,7685,49828.02790.88372.334878.9014636.7884.9566.591
#8, 98.218028.02790.88372.314,87916,745
Total Quantity and Shell Weight58262,571kg236.5 (m)377.9 (m)58262571.1195001194.591
Total Site Weleding length (m)614.4 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes
1. CAPACITY CALCULATION
ÅÊÅ© °øĪ ¹× ÀúÀå¿ë·®ÇÏÁßÁ¶°Ç (Loading Data)
NoTNOLiquid
Name
SGDDLLVnomVstoVhilvRatioÅÊÅ©
Ç¥¸éÀû
4.Empty
Steel
5,ÀúÀå
¾×ü
6.¿îÀü
Áß·®
7.¼ö¾Ð
¼öÁß·®
8.¼ö¾Ð
Å×½ºÆ®Áß·®
mmmm£í©ø£í©ø£í©ø(%)m2Ton
110-TK-7210ABEthylene0.45119,10016,9003648.373514.31134.063.7 (%)1146.08436.541584.952021.493648.374084.91
210-TK-7310HP Propylene0.52622,80018,6006205.885651.7554.188.9 (%)1633.13749.42972.793722.196205.886955.27
310-TK-7320HP Off-Spec Propylene0.52619,10011,3003648.372319.981328.3936.4 (%)1146.08434.411220.311654.723648.374082.78
410-TK-7400ABCMixed C4s0.63919,50015,8003882.423516.13366.299.4 (%)1194.59319.072246.812565.883882.424201.49
510-TK-7420ABC1,3 Butadiene0.63919,90015,9004126.273693.15433.1210.5 (%)1244.1343.732359.922703.664126.274470.01
610-TK-7440ABButene-10.60119,50015,6503882.423488.16394.2610.2 (%)1194.59319.072096.382415.463882.424201.49
710-TK-7320HP Off-Spec Propylene0.52619,10011,3003648.372319.981328.3936.4 (%)1146.08488.271220.311708.583648.374136.64
810-TK-7400ABCMixed C4s0.63919,50015,8003882.423516.13366.299.4 (%)1194.59319.072246.812565.883882.424201.49
910-TK-7420ABC1,3 Butadiene0.63919,90015,9004126.273693.15433.1210.5 (%)1244.1343.732359.922703.664126.274470.01
1010-TK-7440ABButene-10.60119,50015,6503882.423488.16394.2610.2 (%)1194.59300.172096.382396.563882.424182.59

°ø°£¿ëÀûºñ(%) = °ø°£¿ëÀû / °øĪ¿ë·® * 100
Ratio of vapour Space, vRatio = Vhil / Vnom * 100(%)
uAry[1][3] = [0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ |]
uAry[1][3].substring(0,1).trim() = [0]
uid = [0]
cAry.length = [36] cAry[0].length = [12]
sph.MYANG_SET();
sph.CODE_CALC( );
MATERIAL LIST
No.F0F1F2F3F4F5F6F7F8F9F10F11F12F13F14F15F16F17F18F19F20F21F22F23F24F25F26F27F28F29F30F31F32F33F34Cylindrical Shell
No.TNOCODECONTENTSGDiCAHTHHLLPiPeMDMTDTEMPCQTYMSGMATLSdgtReq
Used
Thk
6Roark
tRoark
1_ASME
tASME
td_2
tTest
td_3
tMAWP
td_5
tMAP
td_5
tVacuum
Shell
Qty
Net
Weight
Ton
Column
Qty
Tank Height
BASE to EQ. Line
(mm)
Upp. Colume
Height(mm)
Low. Colume
Height(mm)
Column
PCD
mm
BRACE
ºÎÂø°¢µµ
(o)deg.
Column
Size
Shell
°¢µµ
ºÐÇÒ¼ö
Spherical
Top ~ Btm
µÎ²²(mm)
Shell matl id, Sd
MPa
Cyl.
td
(mm)
Cyl.
tt
(mm)
Cyl.
tt(MAWP)
(mm)
Cyl.
tt(MAP)
(mm)
110-TK-7210ABDIV. 2Ethylene0.451191001.51255016900201.033227-456512OKSA537-CL2230.0043.5 ~ 4543.7843.8732.0132.6333.9826.4058398.26411 EA12550390086501868031.3168©ª 914.4x10.31t1143.5 ~ 45matid=6, Sd= 230.0 MPa, t ¡Â 64t86.4364.1465.3768.08
210-TK-7310DIV. 2HP Propylene0.526228001.51440018600201.033227-456512OKSA537-CL2230.0051 ~ 53.552.4952.6138.7439.3140.4131.2266675.60113 EA14400454098602231028.4353©ª 1066.8x12.78t1151 ~ 53.5matid=6, Sd= 230.0 MPa, t ¡Â 64t103.9477.6278.7780.97
310-TK-7320DIV. 2HP Off-Spec Propylene0.526191001.51460011300201.033227-456512OKSA537-CL2230.0043.5 ~ 44.543.4443.5332.0132.7233.9826.4058396.17211 EA12550390086501868031.3168©ª 914.4x10.31t1143.5 ~ 44.5matid=6, Sd= 230.0 MPa, t ¡Â 64t85.7464.1465.5668.08
410-TK-7400ABCDIV. 1Mixed C4s0.639195001.5127501580061.033227-126512OKSA537-CL2158.0030 ~ 3022.7122.7212.4816.4818.9928.7658281.32611 EA12750396087901906031.4208©ª 914.4x10.31t1130 ~ 30matid=6, Sd= 158.0 MPa, t ¡Â 64t44.0424.9932.9938.01
510-TK-7420ABCDIV. 11,3 Butadiene0.639199001.5129501590061.033227-126512OKSA537-CL2158.0030.5 ~ 30.523.1723.1812.7916.8119.3729.3258297.86911 EA12950417087801941031.9158©ª 1016x11.13t1130.5 ~ 30.5matid=6, Sd= 158.0 MPa, t ¡Â 64t44.9525.6133.6638.77
610-TK-7440ABDIV. 1Butene-10.601195001.5125501565061.033227-126512OKSA537-CL2158.0030 ~ 3022.5022.5112.4816.5918.9928.7658281.32611 EA12750396087901906031.4208©ª 914.4x10.31t1130 ~ 30matid=6, Sd= 158.0 MPa, t ¡Â 64t43.6124.9933.2238.01
710-TK-7320DIV. 2HP Off-Spec Propylene0.526191001.51460011300201.033227-456512OKSA537-CL1201.0049 ~ 50.549.4949.6138.5239.1340.2826.4058449.60111 EA12550390086501868031.3168©ª 914.4x10.31t1149 ~ 50.5matid=4, Sd= 201.0 MPa, t ¡Â 64t97.9577.2078.4180.73
810-TK-7400ABCDIV. 1Mixed C4s0.639195001.5127501580061.033227-126512OKSA537-CL1138.0030 ~ 3025.7925.8015.0117.4420.3328.9058281.32611 EA12750396087901906031.4208©ª 914.4x10.31t1130 ~ 30matid=4, Sd= 138.0 MPa, t ¡Â 64t50.2230.0634.9240.70
910-TK-7420ABCDIV. 11,3 Butadiene0.639199001.5129501590061.033227-126512OKSA537-CL1138.0030.5 ~ 30.526.3126.3215.3917.820.7429.4658297.86911 EA12950417087801941031.9158©ª 1016x11.13t1130.5 ~ 30.5matid=4, Sd= 138.0 MPa, t ¡Â 64t51.2630.8135.6441.53
1010-TK-7440ABDIV. 21Butene-10.601195001.5125501565061.033227-126512OKSA537-CL1161.0028 ~ 2818.0118.0213.7921.4424.3126.9258262.57111 EA12750396087901906031.4208©ª 914.4x10.31t1128 ~ 28matid=4, Sd= 201.0 MPa, t ¡Â 64t34.5827.6142.9248.68


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7210ABÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(1/10) Tank No. : [10-TK-7210AB] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 19100 mm, DLL = 16900 mm, CA = 1.5 mm, SG = 0.451, Pg = 1961.33 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19100.042.2242.3130.3531.7026.4043.5#124.6oSA537-CL243.52733.58200.637,27221,816typ=0
8.2o8.2o19002.442.2242.3130.3731.7126.4043.5typ=4
16.4o24.6o18233.242.2242.3130.4631.8026.4043.5typ=4
216.4o41.0o16757.542.2442.3230.6331.9826.4043.5#216.4oSA537-CL243.52733.59060.646,54626,183typ=3
345.0o86.0o10216.242.8542.9331.4132.7626.4044.0#345.0oSA537-CL244.02720.87550.0226,162135,572typ=3
44.0o90.0o9550.042.7542.9931.4932.8426.4044.5#453.0oSA537-CL244.52727.58934.0227,502165,040typ=1
49.0o139.0o2342.543.5643.6532.3533.7026.4044.5typ=4
516.4o155.4o866.843.7043.7932.5333.8726.4045.0#516.4oSA537-CL245.02733.58860.646,77127,085typ=3
616.4o171.8o97.643.7743.8632.6233.9726.4045.0#624.6oSA537-CL245.02733.58200.637,52322,568typ=2
8.2o180.0o0.043.7843.8732.6333.9826.4045.0typ=4
Sub-Total58Sht398,264kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO102]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7310ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(2/10) Tank No. : [10-TK-7310] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 22800 mm, DLL = 18600 mm, CA = 1.5 mm, SG = 0.526, Pg = 1961.33 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o22800.050.1150.2236.0737.1731.2251.0#121.0oSA537-CL251.02785.58356.638,85326,560typ=0
7.0o7.0o22715.050.1150.2236.0837.1831.2251.0typ=4
14.0o21.0o22042.850.1150.2236.1837.2831.2251.0typ=4
214.0o35.0o20738.350.1150.2236.3637.4631.2251.0#214.0oSA537-CL251.02785.59447.248,14032,562typ=3
352.0o87.0o11996.650.9751.0737.6138.7031.2252.0#352.0oSA537-CL252.02751.210390.0269,831255,596typ=3
43.0o90.0o11400.050.8151.1437.6938.7931.2253.5#458.0oSA537-CL253.52754.911640.12611,495298,864typ=1
55.0o145.0o2061.752.2352.3439.0240.1231.2253.5typ=4
514.0o159.0o757.252.3952.5139.2140.3031.2253.5#514.0oSA537-CL253.52785.59247.248,53934,158typ=3
614.0o173.0o85.052.4852.5939.3040.4031.2253.5#621.0oSA537-CL253.52785.58356.639,28727,862typ=2
7.0o180.0o0.052.4952.6139.3140.4131.2253.5typ=4
Sub-Total66Sht675,601kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO103]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7320ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(3/10) Tank No. : [10-TK-7320] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 19100 mm, DLL = 11300 mm, CA = 1.5 mm, SG = 0.526, Pg = 1961.33 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19100.042.2242.3130.4531.7026.4043.5#124.6oSA537-CL243.52733.58200.637,27221,816typ=0
8.2o8.2o19002.442.2242.3130.4631.7126.4043.5typ=4
16.4o24.6o18233.242.2242.3130.5531.8026.4043.5typ=4
216.4o41.0o16757.542.2242.3130.7331.9826.4043.5#216.4oSA537-CL243.52733.59060.646,54626,183typ=3
345.0o86.0o10216.242.3442.4331.5132.7626.4043.5#345.0oSA537-CL243.52720.87550.0226,092134,032typ=3
44.0o90.0o9550.042.2642.5031.5932.8426.4044.5#453.0oSA537-CL244.52727.58934.0227,502165,040typ=1
49.0o139.0o2342.543.1843.2832.4433.7026.4044.5typ=4
516.4o155.4o866.843.3443.4332.6233.8726.4044.5#516.4oSA537-CL244.52733.58860.646,69626,784typ=3
616.4o171.8o97.643.4243.5232.7133.9726.4044.5#624.6oSA537-CL244.52733.58200.637,43922,317typ=2
8.2o180.0o0.043.4443.5332.7233.9826.4044.5typ=4
Sub-Total58Sht396,172kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO104]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7400ABCÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(4/10) Tank No. : [10-TK-7400ABC] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 19500 mm, DLL = 15800 mm, CA = 1.5 mm, SG = 0.639, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 158.0 MPa, St= 373.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19500.019.6619.6613.9816.4928.7630.0#124.6oSA537-CL230.02790.88372.335,22715,682typ=0
8.2o8.2o19400.319.6619.6614.0016.5028.7630.0typ=4
16.4o24.6o18615.019.6619.6614.1016.6028.7630.0typ=4
216.4o41.0o17108.419.6619.6614.2916.8028.7630.0#216.4oSA537-CL230.02790.89246.144,70518,821typ=3
345.0o86.0o10430.120.7620.7015.1417.6528.7630.0#345.0oSA537-CL230.02777.87700.0224,37996,348typ=3
44.0o90.0o9750.021.0320.8415.2317.7428.7630.0#453.0oSA537-CL230.02784.69119.0225,271115,972typ=1
49.0o139.0o2391.622.2522.2616.1718.6828.7630.0typ=4
516.4o155.4o885.022.5422.5516.3718.8728.7630.0#516.4oSA537-CL230.02790.89046.144,70518,821typ=3
616.4o171.8o99.722.6922.7016.4718.9728.7630.0#624.6oSA537-CL230.02790.88372.335,22715,682typ=2
8.2o180.0o0.022.7122.7216.4818.9928.7630.0typ=4
Sub-Total58Sht281,326kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO105]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7420ABCÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(5/10) Tank No. : [10-TK-7420ABC] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 19900 mm, DLL = 15900 mm, CA = 1.5 mm, SG = 0.639, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 158.0 MPa, St= 373.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19900.020.0320.0414.2116.7629.3230.5#124.6oSA537-CL230.52848.08544.135,53516,605typ=0
8.2o8.2o19798.320.0320.0414.2316.7829.3230.5typ=4
16.4o24.6o18996.920.0320.0414.3316.8829.3230.5typ=4
216.4o41.0o17459.420.0320.0414.5317.0829.3230.5#216.4oSA537-CL230.52848.09431.744,98219,928typ=3
345.0o86.0o10644.121.1321.0715.4217.9729.3230.5#345.0oSA537-CL230.52834.87860.0224,637102,013typ=3
44.0o90.0o9950.021.3621.2115.5118.0629.3230.5#453.0oSA537-CL230.52841.79304.0225,581122,792typ=1
49.0o139.0o2440.622.6922.7016.4919.0529.3230.5typ=4
516.4o155.4o903.122.9923.0016.7019.2529.3230.5#516.4oSA537-CL230.52848.09231.744,98219,928typ=3
616.4o171.8o101.723.1523.1616.8019.3529.3230.5#624.6oSA537-CL230.52848.08544.135,53516,605typ=2
8.2o180.0o0.023.1723.1816.8119.3729.3230.5typ=4
Sub-Total58Sht297,869kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO106]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7440ABÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(6/10) Tank No. : [10-TK-7440AB] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 19500 mm, DLL = 15650 mm, CA = 1.5 mm, SG = 0.601, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 158.0 MPa, St= 373.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19500.019.6619.6614.1016.4928.7630.0#124.6oSA537-CL230.02790.88372.335,22715,682typ=0
8.2o8.2o19400.319.6619.6614.1116.5028.7630.0typ=4
16.4o24.6o18615.019.6619.6614.2116.6028.7630.0typ=4
216.4o41.0o17108.419.6619.6614.4116.8028.7630.0#216.4oSA537-CL230.02790.89246.144,70518,821typ=3
345.0o86.0o10430.120.6620.6215.2617.6528.7630.0#345.0oSA537-CL230.02777.87700.0224,37996,348typ=3
44.0o90.0o9750.020.8820.7415.3517.7428.7630.0#453.0oSA537-CL230.02784.69119.0225,271115,972typ=1
49.0o139.0o2391.622.0722.0816.2918.6828.7630.0typ=4
516.4o155.4o885.022.3422.3516.4818.8728.7630.0#516.4oSA537-CL230.02790.89046.144,70518,821typ=3
616.4o171.8o99.722.4922.5016.5818.9728.7630.0#624.6oSA537-CL230.02790.88372.335,22715,682typ=2
8.2o180.0o0.022.5022.5116.5918.9928.7630.0typ=4
Sub-Total58Sht281,326kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO107]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7320ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(7/10) Tank No. : [10-TK-7320] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 19100 mm, DLL = 11300 mm, CA = 1.5 mm, SG = 0.526, Pg = 1961.33 kPa, Pe = 101.325 kPa
, SA537-CL1 matid=4, Sd= 201.0 MPa, St= 327.75 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19100.048.1048.2136.3937.5426.4049.0#124.6oSA537-CL149.02733.58200.638,19124,574typ=0
8.2o8.2o19002.448.1048.2136.4037.5526.4049.0typ=4
16.4o24.6o18233.248.1048.2136.5137.6626.4049.0typ=4
216.4o41.0o16757.548.1048.2136.7237.8826.4049.0#216.4oSA537-CL149.02733.59060.647,37329,493typ=3
345.0o86.0o10216.248.2348.3537.6638.8126.4049.5#345.0oSA537-CL149.52720.87550.0226,933152,519typ=3
44.0o90.0o9550.048.1448.4337.7638.9126.4050.5#453.0oSA537-CL150.52727.58934.0228,513187,293typ=1
49.0o139.0o2342.549.2049.3238.7939.9426.4050.5typ=4
516.4o155.4o866.849.3849.5039.0040.1526.4050.5#516.4oSA537-CL150.52733.58860.647,59930,396typ=3
616.4o171.8o97.649.4749.5939.1140.2626.4050.5#624.6oSA537-CL150.52733.58200.638,44225,326typ=2
8.2o180.0o0.049.4949.6139.1340.2826.4050.5typ=4
Sub-Total58Sht449,601kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO108]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7400ABCÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(8/10) Tank No. : [10-TK-7400ABC] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 19500 mm, DLL = 15800 mm, CA = 1.5 mm, SG = 0.639, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL1 matid=4, Sd= 138.0 MPa, St= 310.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19500.022.2922.3014.4417.3328.9030.0#124.6oSA537-CL130.02790.88372.335,22715,682typ=0
8.2o8.2o19400.322.2922.3014.4517.3428.9030.0typ=4
16.4o24.6o18615.022.2922.3014.5717.4628.9030.0typ=4
216.4o41.0o17108.422.2922.3014.8117.6928.9030.0#216.4oSA537-CL130.02790.89246.144,70518,821typ=3
345.0o86.0o10430.123.5523.4915.8318.7228.9030.0#345.0oSA537-CL130.02777.87700.0224,37996,348typ=3
44.0o90.0o9750.023.8723.6415.9418.8328.9030.0#453.0oSA537-CL130.02784.69119.0225,271115,972typ=1
49.0o139.0o2391.625.2625.2717.0719.9628.9030.0typ=4
516.4o155.4o885.025.5925.6017.3120.1928.9030.0#516.4oSA537-CL130.02790.89046.144,70518,821typ=3
616.4o171.8o99.725.7725.7817.4320.3128.9030.0#624.6oSA537-CL130.02790.88372.335,22715,682typ=2
8.2o180.0o0.025.7925.8017.4420.3328.9030.0typ=4
Sub-Total58Sht281,326kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO109]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7420ABCÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(9/10) Tank No. : [10-TK-7420ABC] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 19900 mm, DLL = 15900 mm, CA = 1.5 mm, SG = 0.639, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL1 matid=4, Sd= 138.0 MPa, St= 310.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19900.022.7222.7214.6717.6229.4630.5#124.6oSA537-CL130.52848.08544.135,53516,605typ=0
8.2o8.2o19798.322.7222.7214.6917.6329.4630.5typ=4
16.4o24.6o18996.922.7222.7214.8117.7629.4630.5typ=4
216.4o41.0o17459.422.7222.7215.0518.0029.4630.5#216.4oSA537-CL130.52848.09431.744,98219,928typ=3
345.0o86.0o10644.123.9723.9116.1319.0729.4630.5#345.0oSA537-CL130.52834.87860.0224,637102,013typ=3
44.0o90.0o9950.024.2524.0716.2419.1829.4630.5#453.0oSA537-CL130.52841.79304.0225,581122,792typ=1
49.0o139.0o2440.625.7625.7717.4220.3629.4630.5typ=4
516.4o155.4o903.126.1026.1217.6620.6029.4630.5#516.4oSA537-CL130.52848.09231.744,98219,928typ=3
616.4o171.8o101.726.2926.3017.7820.7329.4630.5#624.6oSA537-CL130.52848.08544.135,53516,605typ=2
8.2o180.0o0.026.3126.3217.8020.7429.4630.5typ=4
Sub-Total58Sht297,869kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO110]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 10-TK-7440ABÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(10/10) Tank No. : [10-TK-7440AB] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 19500 mm, DLL = 15650 mm, CA = 1.5 mm, SG = 0.601, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA537-CL1 matid=4, Sd= 201.0 MPa, St= 327.75 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o19500.015.7715.7818.5921.4626.9228.0#124.6oSA537-CL128.02790.88372.334,87914,637typ=0
8.2o8.2o19400.315.7715.7818.6021.4726.9228.0typ=4
16.4o24.6o18615.015.7715.7818.7221.5926.9228.0typ=4
216.4o41.0o17108.415.7715.7818.9421.8126.9228.0#216.4oSA537-CL128.02790.89246.144,39217,566typ=3
345.0o86.0o10430.116.5616.5319.9122.7826.9228.0#345.0oSA537-CL128.02777.87700.0224,08789,924typ=3
44.0o90.0o9750.016.7316.6320.0122.8826.9228.0#453.0oSA537-CL128.02784.69119.0224,920108,241typ=1
49.0o139.0o2391.617.6717.6821.0923.9626.9228.0typ=4
516.4o155.4o885.017.8817.9021.3124.1826.9228.0#516.4oSA537-CL128.02790.89046.144,39217,566typ=3
616.4o171.8o99.718.0018.0121.4224.2926.9228.0#624.6oSA537-CL128.02790.88372.334,87914,637typ=2
8.2o180.0o0.018.0118.0221.4424.3126.9228.0typ=4
Sub-Total58Sht262,571kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO111]

CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. 10-TK-7210ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.451, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2522.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19103.0001961.31961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0161 / 11
P18.2o8.2o19005.3001961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0162 / 11
P216.4o24.6o18236.1001961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0163 / 11
P316.4o41.0o16760.1141.40.61961.942.2442.3243.50.7+0.482.01772.09051.0¥òeq = 223.0874 / 11
P445.0o86.0o10217.86683.729.61990.942.8542.9344.00.7+0.372.01272.11451.0¥òeq = 223.765 / 11
P54.0o90.0o9551.57350.032.51993.842.7542.9944.50.7+0.312.00982.11451.0¥òeq = 223.2396 / 11
49.0o139.0o2342.914558.664.42025.743.5643.6544.50.7+0.152.00182.13851.0¥òeq = 224.9838 / 11
P616.4o155.4o866.916034.670.92032.243.7043.7945.00.7+0.512.01932.16241.0¥òeq = 223.1129 / 11
P716.4o171.8o97.716803.874.32035.643.7743.8645.00.7+0.442.01592.16241.0¥òeq = 223.48510 / 11
P88.2o180.0o016901.574.82036.143.7843.8745.00.7+0.432.01542.16242.00182.09051.0¥òeq = 223.53311 / 11
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.9613MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =2.0018MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.0905MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. 10-TK-7210ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.451, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2502.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19100.0002502.22502.229.7430.3531.7043.52.01832.0905¥òeq = 374.6081 / 11
P18.2o8.2o19002.497.61.02503.229.7530.3731.7143.52.01832.0905¥òeq = 374.7912 / 11
P216.4o24.6o18233.2866.88.52510.729.8430.4631.8043.52.01832.0905¥òeq = 376.2353 / 11
P316.4o41.0o16757.52342.523.02525.230.0230.6331.9843.52.01772.0905¥òeq = 379.0174 / 11
P445.0o86.0o10216.28883.887.12589.330.8031.4132.7644.02.01272.1145¥òeq = 376.6255 / 11
P54.0o90.0o9550.09550.093.72595.930.8831.4932.8444.52.00982.1145¥òeq = 376.5896 / 11
49.0o139.0o2342.516757.5164.32666.531.7432.3533.7044.52.00182.1385¥òeq = 375.948 / 11
P616.4o155.4o866.818233.2178.82681.031.9132.5333.8745.02.01932.1624¥òeq = 378.4849 / 11
P716.4o171.8o97.619002.4186.32688.532.0032.6233.9745.02.01592.1624¥òeq = 379.81610 / 11
P88.2o180.0o019100.0187.32689.532.0132.6333.9845.02.01542.1624¥òeq = 379.98511 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.0018at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.502225.5153
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0905at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.613126.6462


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. 10-TK-7210ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.451, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2502.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19103.00019100.00042.0043.52.01832.0905287.30741 / 11
P18.2o8.2o19005.30019002.497.61.042.0043.52.01832.0905287.30742 / 11
P216.4o24.6o18236.10018233.2866.88.542.0043.52.01832.0905287.30743 / 11
P316.4o41.0o16760.1141.40.616757.52342.523.042.0043.52.01772.0905287.30744 / 11
P445.0o86.0o10217.86683.729.610216.28883.887.142.5044.02.01272.1145294.15815 / 11
P54.0o90.0o9551.57350.032.59550.09550.093.742.5044.02.00982.1145294.15816 / 11
49.0o139.0o2342.914558.664.42342.516757.5164.343.0044.52.00182.1385301.08888 / 11
P616.4o155.4o866.916034.670.9866.818233.2178.843.5045.02.01932.1624308.09949 / 11
P716.4o171.8o97.716803.874.397.619002.4186.343.5045.02.01592.1624308.099410 / 11
P88.2o180.0o016901.574.8019100.0187.343.5045.02.01542.1624308.099411 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.0018at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.502225.5153
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0905at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.613126.6462
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =287.30742.9297CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=287.3074 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. 10-TK-7210ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.451, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2502.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o42.2242.330.3531.7026.4043.50.7+0.49#124.643.52733.58200.637,27221,8161 / 11
P18.2o8.2o42.2242.330.3731.7126.4043.50.7+0.492 / 11
P216.4o24.6o42.2242.330.4631.8026.4043.50.7+0.493 / 11
P316.4o41.0o42.2442.330.6331.9826.4043.50.7+0.48#216.443.52733.59060.646,54626,1834 / 11
P445.0o86.0o42.8542.931.4132.7626.4044.00.7+0.37#345.044.02720.87550.0226,162135,5725 / 11
P54.0o90.0o42.7543.031.4932.8426.4044.50.7+0.31#453.044.52727.58934.0227,502165,0406 / 11
49.0o139.0o43.5643.632.3533.7026.4044.50.7+0.158 / 11
P616.4o155.4o43.7043.832.5333.8726.4045.00.7+0.51#516.445.02733.58860.646,77127,0859 / 11
P716.4o171.8o43.7743.932.6233.9726.4045.00.7+0.44#624.645.02733.58200.637,52322,56810 / 11
P88.2o180.0o43.7843.932.6333.9826.4045.00.7+0.4311 / 11
], CalcRpt[i][1]=[Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.4 mm; Pe :101.32 kPa ¡Â Pa = 101.34 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.976; Fic=38.976 MPa; Fha=19.488 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19100 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=279.853, N¥õ=30.643
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9551.5mm955.15cm
4¡¡L = Design Liquid levelL = 16900mm1690.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 19,513,342N1989807.2Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.4510.451
10¡¡¥ã = Liquid Density¥ã = 4.422799E-6N/mm©ø451.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.97153degree0.41838radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 39.68986degree0.69272radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99650790.9965079
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08455841.0845584
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40628270.4062827
20¡¡C5 = 22 / ¥õC5 = 0.91775520.9177552
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40628270.4062827
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9366.678N-mm95.514Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 279.853N-mm2.854Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 30.643N-mm0.312Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 9781.84N/mm9974.701Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9153.17N/mm9333.636Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 43.87mm4.387cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 42.75mm4.275cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 218.107MPa2224.072Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 796,043,278N-mm8117.382¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 302,455,793N-mm3084.191¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 399,651,875N-mm4075.315¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 143,432,213N-mm1462.602¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 181.584N/mm185.164Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 465,232,429N-mm4744.051¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 242,695,630N-mm2474.807¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 115,293,594mm©ø115.294¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,045,022,834mm©ø5045.023¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7694E-51.7694E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.049737E-36.049737E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1969.112mm196.911cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 46.277N/mm47.189Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 40,560,182N-mm413.599¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 20,363,155N-mm207.646¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 876,464mm©ø8764.642cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 242,102,401mm©ø242.102¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 276.226mm27.623cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 547.615mm54.762cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 244.15N/mm248.964Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 168.56N/mm171.883Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,346,694N137324.6Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 38466.244N3922.5Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7761.219mm776.122cm

piDeg=[23.971534139659223] piRad=[0.4183821974912797] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019103.0001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P18.219005.3001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P224.618236.1001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P34116760.1141.40.00061.96199366.685.890.089372.579366.76223.09 < OK 23042.2442.3243.50.083.010.0880.0010.0150
P48610217.86683.70.02961.99099366.68252.2730.089618.959396.76223.76 < OK 23042.8542.9344.00.082.713.7510.4470.6250.075
P5909551.57350.00.03251.99389366.68279.8530.64181.5846.28244.15168.569781.849153.17223.24 < OK 23042.7542.9944.00.242.944.1610.4560.6940.076Column Attached Equator Plate
1392342.914558.60.06442.02579366.68281.61333.419648.299700.08224.98 < OK 23043.5643.6544.50.092.184.1884.9580.6980.826
P6155.4866.916034.60.07092.03229366.68329.38347.999696.069714.66223.11 < OK 23043.7043.7945.00.092.994.8985.1750.8160.862
P7171.897.716803.80.07432.03569366.68353.90355.979720.589722.65223.48 < OK 23043.7743.8645.00.092.835.2635.2930.8770.882
P8180016901.50.07482.03619366.68357.00357.009723.689723.68223.53 < OK 23043.7843.8745.00.092.815.3095.3090.8850.885


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19100 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=745.326, N¥õ=149.065
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9550mm955.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19100mm1910.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 38,689,801N3945261.7Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.10292degree0.42068radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99626470.9962647
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09014891.0901489
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40837700.4083770
20¡¡C5 = 22 / ¥õC5 = 0.91275250.9127525
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40837700.4083770
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9365.208N-mm95.499Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 745.326N-mm7.6Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 149.065N-mm1.52Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 10376.76N/mm10581.35Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9032.75N/mm9210.842Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 26.06mm2.606cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 24.84mm2.484cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.641MPa3697.909Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,578,095,558N-mm16092.096¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 595,781,896N-mm6075.285¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 792,279,597N-mm8079.004¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 282,694,774N-mm2882.684¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 356.487N/mm363.516Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 922,709,860N-mm9409.022¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 481,140,769N-mm4906.27¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 85,415,191mm©ø85.415¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,123,036,038mm©ø5123.036¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8183E-51.8183E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.149165E-36.149165E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1979.275mm197.928cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 90.256N/mm92.036Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 80,374,408N-mm819.591¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 40,351,805N-mm411.474¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 890,515mm©ø8905.154cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 248,624,515mm©ø248.625¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 279.192mm27.919cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 553.441mm55.344cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 481.522N/mm491.016Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 333.068N/mm339.635Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,675,036N272777.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 77106.431N7862.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7800.0mm780.0cm

piDeg=[24.10291888089687] piRad=[0.4206752938127573] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019100.0001.96139365.219365.219365.21374.61 < OK 394.2523.7523.7825.00.034.980000
P18.219002.497.60.00101.96239365.216.862.289372.079367.49374.79 < OK 394.2523.7723.8025.00.034.940.0460.0150.0080.003
P224.618233.2866.80.00851.96989365.2161.2119.979426.419385.18376.24 < OK 394.2523.8623.8925.00.034.570.4110.1340.0680.022
P34116757.52342.50.02301.98439365.21167.0952.299532.309417.50379.02 < OK 394.2524.0324.0625.00.033.861.1210.3510.1870.058
P48610216.28883.80.08712.04849365.21684.29147.7110049.509512.92376.62 < OK 394.2524.8424.8426.04.474.5910.9910.7650.165
P5909550.09550.00.09372.0559365.21745.33149.07356.4990.26481.52333.0710376.769032.75376.59 < OK 394.2524.8424.9226.00.084.48510.8330.167Column Attached Equator Plate
1392342.516757.50.16432.12569365.21727.30842.1010092.5010207.31375.94 < OK 394.2525.7525.7827.00.034.644.8795.6490.8130.942
P6155.4866.818233.20.17882.14019365.21833.19874.4210198.3910239.63378.48 < OK 394.2525.9225.9627.00.044.005.5895.8660.9320.978
P7171.897.619002.40.18632.14769365.21887.53892.1110252.7410257.32379.82 < OK 394.2526.0126.0527.00.043.665.9545.9850.9920.997
P8180019100.00.18732.14869365.21894.39894.3910259.6010259.60379.98 < OK 394.2526.0226.0627.00.043.626611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 398264.204
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19100
MRA(sWt[tid][20][10])= 1146.086
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12550mm
5. gCol[tid][5] =Upper Column HeightUCHT =3900mm
6. gCol[tid][6] =Lower Column HeightLCHT =8650mm
7. gCol[tid][7] =Column P.C.DPCD =18680mm
8. gCol[tid][8] =Brace AngleBRang =31.3168deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.0377deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t43.5 ~ 45SHT58398.264485.882000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt45, t12¡¿3173¡¿3900SHT1116.40218.042000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8650LPCS1121.87121.871000,000000,0003
4BRACE ( PIPE, ¥è= 31.3168 deg.)null¨ª0¡¿0t ¡¿ 10125LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102436.537525.795000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. 10-TK-7310Rev. No.[AAA4] 
Design Code : Div. 2, Di = 22800 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2491 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o22803.0001961.31961.350.1150.2251.00.7+0.081.99282.05331.0¥òeq = 225.8761 / 11
P17.0o7.0o22718.0001961.350.1150.2251.00.7+0.081.99282.05331.0¥òeq = 225.8762 / 11
P214.0o21.0o22045.7001961.350.1150.2251.00.7+0.081.99282.05331.0¥òeq = 225.8763 / 11
P314.0o35.0o20741.1001961.350.1150.2251.00.7+0.081.99282.05331.0¥òeq = 225.8764 / 11
P452.0o87.0o11998.26603.334.11995.450.9751.0752.00.7+0.231.99892.09351.0¥òeq = 225.3215 / 11
P53.0o90.0o11401.57200.037.11998.450.8151.1453.50.7+0.161.99592.09351.0¥òeq = 224.5626 / 11
55.0o145.0o2061.916539.685.32046.652.2352.3453.50.7+0.462.00792.15371.0¥òeq = 224.3738 / 11
P614.0o159.0o757.317844.292.02053.352.3952.5153.50.7+0.292.00122.15371.0¥òeq = 225.1089 / 11
P714.0o173.0o85.018516.595.52056.852.4852.5953.50.7+0.211.99772.15371.0¥òeq = 225.48810 / 11
P87.0o180.0o018601.596.02057.352.4952.6153.50.7+0.191.99722.15371.99282.05331.0¥òeq = 225.53611 / 11
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.9613MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.9928MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.0533MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. 10-TK-7310Rev. No.[AAA4] 
Design Code : Div. 2, Di = 22800 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2491 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o22800.0002491.02491.035.5036.0737.1751.01.99282.0533¥òeq = 378.9631 / 11
P17.0o7.0o22715.085.00.82491.835.5136.0837.1851.01.99282.0533¥òeq = 379.1242 / 11
P214.0o21.0o22042.8757.27.42498.435.6136.1837.2851.01.99282.0533¥òeq = 380.43 / 11
P314.0o35.0o20738.32061.720.22511.235.7936.3637.4651.01.99282.0533¥òeq = 382.8854 / 11
P452.0o87.0o11996.610803.4105.92596.937.0437.6138.7052.01.99892.0935¥òeq = 380.7395 / 11
P53.0o90.0o11400.011400.0111.82602.837.1237.6938.7953.51.99592.0935¥òeq = 380.0966 / 11
55.0o145.0o2061.720738.3203.42694.438.4539.0240.1253.52.00792.1537¥òeq = 379.6648 / 11
P614.0o159.0o757.222042.8216.22707.238.6439.2140.3053.52.00122.1537¥òeq = 381.8969 / 11
P714.0o173.0o85.022715.0222.82713.838.7339.3040.4053.51.99772.1537¥òeq = 383.0510 / 11
P87.0o180.0o022800.0223.62714.638.7439.3140.4153.51.99722.1537¥òeq = 383.19611 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.9928at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.491025.4011
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0533at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.566626.1720


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. 10-TK-7310Rev. No.[AAA4] 
Design Code : Div. 2, Di = 22800 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2491 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o22803.00022800.00049.5051.01.99282.0533280.10831 / 11
P17.0o7.0o22718.00022715.085.00.849.5051.01.99282.0533280.10832 / 11
P214.0o21.0o22045.70022042.8757.27.449.5051.01.99282.0533280.10833 / 11
P314.0o35.0o20741.10020738.32061.720.249.5051.01.99282.0533280.10834 / 11
P452.0o87.0o11998.26603.334.111996.610803.4105.950.5052.01.99892.0935291.48925 / 11
P53.0o90.0o11401.57200.037.111400.011400.0111.850.5052.01.99592.0935291.48926 / 11
55.0o145.0o2061.916539.685.32061.720738.3203.452.0053.52.00792.1537308.98168 / 11
P614.0o159.0o757.317844.292.0757.222042.8216.252.0053.52.00122.1537308.98169 / 11
P714.0o173.0o85.018516.595.585.022715.0222.852.0053.51.99772.1537308.981610 / 11
P87.0o180.0o018601.596.0022800.0223.652.0053.51.99722.1537308.981611 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.9928at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.491025.4011
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0533at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.566626.1720
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =280.10832.8563CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=280.1083 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. 10-TK-7310Rev. No.[AAA4] 
Design Code : Div. 2, Di = 22800 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2491 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o50.1150.236.0737.1731.2251.00.7+0.08#121.051.02785.58356.638,85326,5601 / 11
P17.0o7.0o50.1150.236.0837.1831.2251.00.7+0.082 / 11
P214.0o21.0o50.1150.236.1837.2831.2251.00.7+0.083 / 11
P314.0o35.0o50.1150.236.3637.4631.2251.00.7+0.08#214.051.02785.59447.248,14032,5624 / 11
P452.0o87.0o50.9751.137.6138.7031.2252.00.7+0.23#352.052.02751.210390.0269,831255,5965 / 11
P53.0o90.0o50.8151.137.6938.7931.2253.50.7+0.16#458.053.52754.911640.12611,495298,8646 / 11
55.0o145.0o52.2352.339.0240.1231.2253.50.7+0.468 / 11
P614.0o159.0o52.3952.539.2140.3031.2253.50.7+0.29#514.053.52785.59247.248,53934,1589 / 11
P714.0o173.0o52.4852.639.3040.4031.2253.50.7+0.21#621.053.52785.58356.639,28727,86210 / 11
P87.0o180.0o52.4952.639.3140.4131.2253.50.7+0.1911 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. 10-TK-7210ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.451, Pg= 20 kg/cm©÷(=1961.33 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2502.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o42.2242.330.3531.7026.4043.50.7+0.49#124.643.52733.58200.637,27221,8161 / 11
P18.2o8.2o42.2242.330.3731.7126.4043.50.7+0.492 / 11
P216.4o24.6o42.2242.330.4631.8026.4043.50.7+0.493 / 11
P316.4o41.0o42.2442.330.6331.9826.4043.50.7+0.48#216.443.52733.59060.646,54626,1834 / 11
P445.0o86.0o42.8542.931.4132.7626.4044.00.7+0.37#345.044.02720.87550.0226,162135,5725 / 11
P54.0o90.0o42.7543.031.4932.8426.40TD90USED0.7+0.31#453.044.52727.58934.0227,502165,0406 / 11
49.0o139.0o43.5643.632.3533.7026.4044.50.7+0.158 / 11
P616.4o155.4o43.7043.832.5333.8726.4045.00.7+0.51#516.445.02733.58860.646,77127,0859 / 11
P716.4o171.8o43.7743.932.6233.9726.4045.00.7+0.44#624.645.02733.58200.637,52322,56810 / 11
P88.2o180.0o43.7843.932.6333.9826.4045.00.7+0.4311 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 31.22 mm; Pe :101.32 kPa ¡Â Pa = 101.32 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.973; Fic=38.973 MPa; Fha=19.486 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=22800 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 45200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=395.304, N¥õ=28.144
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 22800mm2280.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 11401.5mm1140.15cm
4¡¡L = Design Liquid levelL = 18600mm1860.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 35,879,260N3658666.3Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5260.526
10¡¡¥ã = Liquid Density¥ã = 5.158298E-6N/mm©ø526.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 13.0columns13columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.35901degree0.40769radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 50.83943degree0.88732radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99762450.9976245
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.05842031.0584203
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.39649120.3964912
20¡¡C5 = 22 / ¥õC5 = 0.94182070.9418207
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.39649120.3964912
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 11180.881N-mm114.013Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 395.304N-mm4.031Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 28.144N-mm0.287Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 11736.71N/mm11968.113Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 10882.46N/mm11097.021Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 52.6mm5.26cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 50.81mm5.081cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 218.085MPa2223.848Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,248,995,727N-mm12736.212¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 473,540,207N-mm4828.766¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 626,326,993N-mm6386.758¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 227,482,434N-mm2319.675¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 214.449N/mm218.677Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 744,824,108N-mm7595.092¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 384,067,096N-mm3916.394¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 185,815,873mm©ø185.816¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 7,961,026,173mm©ø7961.026¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.5551E-51.5551E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 5.600209E-35.600209E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2292.134mm229.213cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 53.922N/mm54.985Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 62,361,064N-mm635.906¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 31,271,858N-mm318.884¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,156,506mm©ø11565.058cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 362,253,176mm©ø362.253¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 313.231mm31.323cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 621.253mm62.125cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 326.565N/mm333.004Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 224.091N/mm228.509Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,091,739N213298.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65687.952N6698.3Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9041.189mm904.119cm

piDeg=[23.35901064103828] piRad=[0.40769164569450933] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=22800 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 45200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
022803.0001.961311180.8811180.8811180.88225.88 < OK 23050.1150.2251.00.111.790000
P1722718.0001.961311180.8811180.8811180.88225.88 < OK 23050.1150.2251.00.111.790000
P22122045.7001.961311180.8811180.8811180.88225.88 < OK 23050.1150.2251.00.111.790000
P33520741.1001.961311180.8811180.8811180.88225.88 < OK 23050.1150.2251.00.111.790000
P48711998.26603.30.03411.995411180.88360.6827.6711541.5611208.55225.32 < OK 23050.9751.0652.00.092.033.2270.2480.5380.041
P59011401.57200.00.03711.998411180.88395.3028.14214.4553.92326.56224.0911736.7110882.46224.56 < OK 23050.8151.1452.00.332.363.5370.2520.590.042Column Attached Equator Plate
1452061.916539.60.08532.046611180.88455.04517.6911635.9211698.57224.37 < OK 23052.2352.3453.50.112.454.0724.6320.6790.772
P6159757.317844.20.09202.053311180.88513.47535.9911694.3511716.87225.11 < OK 23052.3952.5153.50.122.134.5944.7960.7660.799
P717385.018516.50.09552.056811180.88543.25545.7511724.1311726.63225.49 < OK 23052.4852.5953.50.111.964.8614.8830.810.814
P8180018601.50.09602.057311180.88547.00547.0011727.8811727.88225.54 < OK 23052.4952.6053.50.111.944.8944.8940.8160.816


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=22800 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 45400.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=1062.06, N¥õ=212.412
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 22800mm2280.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 11400mm1140.0cm
4¡¡L = Hydrostatic-test Water LevelL = 22800mm2280.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 65,824,863N6712268.0Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 13.0columns13columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.46855degree0.4096radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99742690.9974269
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.06310361.0631036
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.39824560.3982456
20¡¡C5 = 22 / ¥õC5 = 0.93742480.9374248
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.39824560.3982456
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 11179.41N-mm113.998Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 1062.06N-mm10.83Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 212.412N-mm2.166Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 12534.13N/mm12781.256Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 10795.42N/mm11008.265Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 31.63mm3.163cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 29.89mm2.989cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.553MPa3697.012Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 2,291,133,024N-mm23363.055¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 863,572,194N-mm8805.986¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 1,148,921,831N-mm11715.742¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 415,003,037N-mm4231.853¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 390.205N/mm397.898Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,367,170,937N-mm13941.264¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 704,774,285N-mm7186.698¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 138,397,147mm©ø138.397¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 8,066,553,444mm©ø8066.553¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.5918E-51.5918E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 5.678919E-35.678919E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2302.279mm230.228cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 97.542N/mm99.465Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 114,356,171N-mm1166.108¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 57,345,558N-mm584.762¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,172,373mm©ø11723.729cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 370,597,653mm©ø370.598¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 316.109mm31.611cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 626.912mm62.691cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 596.404N/mm608.163Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 409.906N/mm417.988Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 3,843,593N391937.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 121,646N12404.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9080.0mm908.0cm

piDeg=[23.468549061715265] piRad=[0.40960345179275726] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=22800 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 45400.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
022800.0001.961311179.4111179.4111179.41378.96 < OK 394.2528.3628.3929.50.033.880000
P1722715.085.00.00081.962111179.417.132.3711186.5411181.78379.12 < OK 394.2528.3728.4029.50.033.840.0340.0110.0060.002
P22122042.8757.20.00741.968711179.4163.7320.9211243.1411200.33380.40 < OK 394.2528.4628.5029.50.043.510.30.0980.050.016
P33520738.32061.70.02021.981511179.41174.7755.7111354.1811235.12382.88 < OK 394.2528.6528.6829.50.032.880.8230.2620.1370.044
P48711996.610803.40.10592.067211179.41996.47211.3112175.8811390.72380.74 < OK 394.2529.9429.9331.0-0.013.434.6910.9950.7820.166
P59011400.011400.00.11182.073111179.411062.06212.41390.2097.54596.40409.9112534.1310795.42380.10 < OK 394.2529.8930.0131.00.123.59510.8330.167Column Attached Equator Plate
1452061.720738.30.20342.164711179.411099.701218.7612279.1112398.17379.66 < OK 394.2531.3031.3432.50.043.705.1775.7380.8630.956
P6159757.222042.80.21622.177511179.411210.741253.5512390.1512432.96381.90 < OK 394.2531.4831.5232.50.043.135.75.9020.950.984
P717385.022715.00.22282.184111179.411267.341272.1012446.7512451.51383.05 < OK 394.2531.5831.6232.50.042.845.9665.9890.9940.998
P8180022800.00.22362.184911179.411274.471274.4712453.8812453.88383.20 < OK 394.2531.5931.6332.50.042.806611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 66
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 675600.607
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 22800
MRA(sWt[tid][20][10])= 1633.125
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =13Columns
2. gCol[tid][2] =Column ODOD =1066.8mm
3. gCol[tid][3] =Column thkthk =12.78mm
4. gCol[tid][4] =Tank HeightHtank =14400mm
5. gCol[tid][5] =Upper Column HeightUCHT =4540mm
6. gCol[tid][6] =Lower Column HeightLCHT =9860mm
7. gCol[tid][7] =Column P.C.DPCD =22310mm
8. gCol[tid][8] =Brace AngleBRang =28.4353deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =11.9001deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t51 ~ 53.5SHT66675.601824.233000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt53.5, t15¡¿3651¡¿4540SHT1331.21734.339000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1066.8¡¿12.78t ¡¿ 9860LPCS1342.57942.579000,000000,0003
4BRACE ( PIPE, ¥è= 28.4353 deg.)null¨ª0¡¿0t ¡¿ 11213LPCS26000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL118749.397901.151000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2522.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19103.0001961.31961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0161 / 11
P18.2o8.2o19005.3001961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0162 / 11
P216.4o24.6o18236.1001961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0163 / 11
P316.4o41.0o16760.1001961.342.2242.3143.50.7+0.492.01832.09051.0¥òeq = 223.0164 / 11
P445.0o86.0o10217.81083.75.61966.942.3442.4343.50.7+0.372.01272.09051.0¥òeq = 223.6555 / 11
P54.0o90.0o9551.51750.09.01970.342.2642.5044.50.7+0.302.00932.09051.0¥òeq = 223.2076 / 11
49.0o139.0o2342.98958.646.22007.543.1843.2844.50.7+0.522.02002.13851.0¥òeq = 222.9658 / 11
P616.4o155.4o866.910434.653.82015.143.3443.4344.50.7+0.372.01242.13851.0¥òeq = 223.8089 / 11
P716.4o171.8o97.711203.857.82019.143.4243.5244.50.7+0.282.00842.13851.0¥òeq = 224.24810 / 11
P88.2o180.0o011301.558.32019.643.4443.5344.50.7+0.272.00792.13852.00792.09051.0¥òeq = 224.30411 / 11
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.9613MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =2.0079MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.0905MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2509.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19100.0002509.92509.929.7430.4531.7043.52.01832.0905¥òeq = 374.6081 / 11
P18.2o8.2o19002.497.61.02510.929.7530.4631.7143.52.01832.0905¥òeq = 374.7912 / 11
P216.4o24.6o18233.2866.88.52518.429.8430.5531.8043.52.01832.0905¥òeq = 376.2353 / 11
P316.4o41.0o16757.52342.523.02532.930.0230.7331.9843.52.01832.0905¥òeq = 379.0174 / 11
P445.0o86.0o10216.28883.887.12597.030.8031.5132.7643.52.01272.0905¥òeq = 376.6255 / 11
P54.0o90.0o9550.09550.093.72603.630.8831.5932.8444.52.00932.0905¥òeq = 376.5896 / 11
49.0o139.0o2342.516757.5164.32674.231.7432.4433.7044.52.02002.1385¥òeq = 375.948 / 11
P616.4o155.4o866.818233.2178.82688.731.9132.6233.8744.52.01242.1385¥òeq = 378.4849 / 11
P716.4o171.8o97.619002.4186.32696.232.0032.7133.9744.52.00842.1385¥òeq = 379.81610 / 11
P88.2o180.0o019100.0187.32697.232.0132.7233.9844.52.00792.1385¥òeq = 379.98511 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.0079at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.509925.5939
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0905at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.613126.6462


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2509.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19103.00019100.00042.0043.52.01832.0905287.30741 / 11
P18.2o8.2o19005.30019002.497.61.042.0043.52.01832.0905287.30742 / 11
P216.4o24.6o18236.10018233.2866.88.542.0043.52.01832.0905287.30743 / 11
P316.4o41.0o16760.10016757.52342.523.042.0043.52.01832.0905287.30744 / 11
P445.0o86.0o10217.81083.75.610216.28883.887.142.0043.52.01272.0905287.30745 / 11
P54.0o90.0o9551.51750.09.09550.09550.093.742.0043.52.00932.0905287.30746 / 11
49.0o139.0o2342.98958.646.22342.516757.5164.343.0044.52.02002.1385301.08888 / 11
P616.4o155.4o866.910434.653.8866.818233.2178.843.0044.52.01242.1385301.08889 / 11
P716.4o171.8o97.711203.857.897.619002.4186.343.0044.52.00842.1385301.088810 / 11
P88.2o180.0o011301.558.3019100.0187.343.0044.52.00792.1385301.088811 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.0079at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.509925.5939
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0905at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.613126.6462
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =287.30742.9297CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=287.3074 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2509.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o42.2242.330.4531.7026.4043.50.7+0.49#124.643.52733.58200.637,27221,8161 / 11
P18.2o8.2o42.2242.330.4631.7126.4043.50.7+0.492 / 11
P216.4o24.6o42.2242.330.5531.8026.4043.50.7+0.493 / 11
P316.4o41.0o42.2242.330.7331.9826.4043.50.7+0.49#216.443.52733.59060.646,54626,1834 / 11
P445.0o86.0o42.3442.431.5132.7626.4043.50.7+0.37#345.043.52720.87550.0226,092134,0325 / 11
P54.0o90.0o42.2642.531.5932.8426.4044.50.7+0.30#453.044.52727.58934.0227,502165,0406 / 11
49.0o139.0o43.1843.332.4433.7026.4044.50.7+0.528 / 11
P616.4o155.4o43.3443.432.6233.8726.4044.50.7+0.37#516.444.52733.58860.646,69626,7849 / 11
P716.4o171.8o43.4243.532.7133.9726.4044.50.7+0.28#624.644.52733.58200.637,43922,31710 / 11
P88.2o180.0o43.4443.532.7233.9826.4044.50.7+0.2711 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. 10-TK-7310Rev. No.[AAA4] 
Design Code : Div. 2, Di = 22800 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm©÷(=1961.33 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2491 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o50.1150.236.0737.1731.2251.00.7+0.08#121.051.02785.58356.638,85326,5601 / 11
P17.0o7.0o50.1150.236.0837.1831.2251.00.7+0.082 / 11
P214.0o21.0o50.1150.236.1837.2831.2251.00.7+0.083 / 11
P314.0o35.0o50.1150.236.3637.4631.2251.00.7+0.08#214.051.02785.59447.248,14032,5624 / 11
P452.0o87.0o50.9751.137.6138.7031.2252.00.7+0.23#352.052.02751.210390.0269,831255,5965 / 11
P53.0o90.0o50.8151.137.6938.7931.22TD90USED0.7+0.16#458.053.52754.911640.12611,495298,8646 / 11
55.0o145.0o52.2352.339.0240.1231.2253.50.7+0.468 / 11
P614.0o159.0o52.3952.539.2140.3031.2253.50.7+0.29#514.053.52785.59247.248,53934,1589 / 11
P714.0o173.0o52.4852.639.3040.4031.2253.50.7+0.21#621.053.52785.58356.639,28727,86210 / 11
P87.0o180.0o52.4952.639.3140.4131.2253.50.7+0.1911 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.4 mm; Pe :101.32 kPa ¡Â Pa = 101.34 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.976; Fic=38.976 MPa; Fha=19.488 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19100 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=85.739, N¥õ=0.482
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9551.5mm955.15cm
4¡¡L = Design Liquid levelL = 11300mm1130.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 15,893,319N1620667.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5260.526
10¡¡¥ã = Liquid Density¥ã = 5.158298E-6N/mm©ø526.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.97153degree0.41838radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 79.44279degree1.38654radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99650790.9965079
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08455841.0845584
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40628270.4062827
20¡¡C5 = 22 / ¥õC5 = 0.91775520.9177552
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40628270.4062827
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9366.678N-mm95.514Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 85.739N-mm0.874Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 0.482N-mm0.482Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 9562.62N/mm9751.159Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9168.3N/mm9349.064Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 43.53mm4.353cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 42.26mm4.226cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 218.016MPa2223.144Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 648,365,082N-mm6611.484¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 246,345,620N-mm2512.026¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 325,510,343N-mm3319.282¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 116,823,345N-mm1191.267¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 147.897N/mm150.813Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 378,924,702N-mm3863.957¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 197,671,881N-mm2015.692¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 114,012,554mm©ø114.013¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,045,022,834mm©ø5045.023¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7694E-51.7694E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.049737E-36.049737E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1969.112mm196.911cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 37.692N/mm38.435Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 33,035,649N-mm336.87¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 16,585,479N-mm169.125¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 876,464mm©ø8764.642cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 242,102,401mm©ø242.102¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 276.226mm27.623cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 547.615mm54.762cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 198.857N/mm202.778Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 137.289N/mm139.996Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,096,862N111848.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 31330.168N3194.8Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7761.219mm776.122cm

piDeg=[23.971534139659223] piRad=[0.4183821974912797] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Sd=230 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019103.0001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P18.219005.3001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P224.618236.1001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P34116760.1001.96139366.689366.689366.68223.02 < OK 23042.2242.3143.50.093.040000
P48610217.81083.70.00561.96699366.6853.070.339419.759367.01223.66 < OK 23042.3442.4343.50.092.760.6770.0040.1130.001
P5909551.51750.00.00901.97039366.6885.740.48147.9037.69198.86137.299562.629168.30223.21 < OK 23042.2642.5043.50.242.951.0930.0060.1820.001Column Attached Equator Plate
1392342.98958.60.04622.00759366.68190.49250.909557.179617.57222.96 < OK 23043.1843.2844.50.103.062.4293.1990.4050.533
P6155.4866.910434.60.05382.01519366.68246.21267.909612.889634.58223.81 < OK 23043.3443.4344.50.092.693.1393.4160.5230.569
P7171.897.711203.80.05782.01919366.68274.80277.219641.489643.89224.25 < OK 23043.4243.5244.50.102.503.5043.5340.5840.589
P8180011301.50.05832.01969366.68278.41278.419645.099645.09224.30 < OK 23043.4443.5344.50.092.483.553.550.5920.592


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19100 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=745.326, N¥õ=149.065
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9550mm955.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19100mm1910.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 38,689,801N3945261.7Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.10292degree0.42068radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99626470.9962647
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09014891.0901489
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40837700.4083770
20¡¡C5 = 22 / ¥õC5 = 0.91275250.9127525
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40837700.4083770
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9365.208N-mm95.499Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 745.326N-mm7.6Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 149.065N-mm1.52Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 10376.76N/mm10581.35Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9032.75N/mm9210.842Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 26.06mm2.606cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 24.84mm2.484cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.641MPa3697.909Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,578,095,558N-mm16092.096¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 595,781,896N-mm6075.285¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 792,279,597N-mm8079.004¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 282,694,774N-mm2882.684¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 356.487N/mm363.516Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 922,709,860N-mm9409.022¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 481,140,769N-mm4906.27¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 85,415,191mm©ø85.415¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,123,036,038mm©ø5123.036¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8183E-51.8183E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.149165E-36.149165E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1979.275mm197.928cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 90.256N/mm92.036Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 80,374,408N-mm819.591¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 40,351,805N-mm411.474¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 890,515mm©ø8905.154cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 248,624,515mm©ø248.625¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 279.192mm27.919cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 553.441mm55.344cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 481.522N/mm491.016Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 333.068N/mm339.635Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,675,036N272777.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 77106.431N7862.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7800.0mm780.0cm

piDeg=[24.10291888089687] piRad=[0.4206752938127573] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Syt=394.25 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019100.0001.96139365.219365.219365.21374.61 < OK 394.2523.7523.7825.00.034.980000
P18.219002.497.60.00101.96239365.216.862.289372.079367.49374.79 < OK 394.2523.7723.8025.00.034.940.0460.0150.0080.003
P224.618233.2866.80.00851.96989365.2161.2119.979426.419385.18376.24 < OK 394.2523.8623.8925.00.034.570.4110.1340.0680.022
P34116757.52342.50.02301.98439365.21167.0952.299532.309417.50379.02 < OK 394.2524.0324.0625.00.033.861.1210.3510.1870.058
P48610216.28883.80.08712.04849365.21684.29147.7110049.509512.92376.62 < OK 394.2524.8424.8426.04.474.5910.9910.7650.165
P5909550.09550.00.09372.0559365.21745.33149.07356.4990.26481.52333.0710376.769032.75376.59 < OK 394.2524.8424.9226.00.084.48510.8330.167Column Attached Equator Plate
1392342.516757.50.16432.12569365.21727.30842.1010092.5010207.31375.94 < OK 394.2525.7525.7827.00.034.644.8795.6490.8130.942
P6155.4866.818233.20.17882.14019365.21833.19874.4210198.3910239.63378.48 < OK 394.2525.9225.9627.00.044.005.5895.8660.9320.978
P7171.897.619002.40.18632.14769365.21887.53892.1110252.7410257.32379.82 < OK 394.2526.0126.0527.00.043.665.9545.9850.9920.997
P8180019100.00.18732.14869365.21894.39894.3910259.6010259.60379.98 < OK 394.2526.0226.0627.00.043.626611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 396171.907
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19100
MRA(sWt[tid][20][10])= 1146.086
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12550mm
5. gCol[tid][5] =Upper Column HeightUCHT =3900mm
6. gCol[tid][6] =Lower Column HeightLCHT =8650mm
7. gCol[tid][7] =Column P.C.DPCD =18680mm
8. gCol[tid][8] =Brace AngleBRang =31.3168deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.0377deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t43.5 ~ 44.5SHT58396.172483.330000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt44.5, t12¡¿3173¡¿3900SHT1116.36618.002000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8650LPCS1121.87121.871000,000000,0003
4BRACE ( PIPE, ¥è= 31.3168 deg.)null¨ª0¡¿0t ¡¿ 10125LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102434.409523.203000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1199.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19503.000588.4588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9941 / 11
P18.2o8.2o19403.300588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9942 / 11
P216.4o24.6o18617.900588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9943 / 11
P316.4o41.0o17111.100588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9944 / 11
P445.0o86.0o10431.75369.833.6622.020.7620.7030.00.7+0.540.88940.97171.0¥òeq = 152.1395 / 11
P54.0o90.0o9751.56050.037.9626.321.0320.8330.00.7+0.540.88510.97171.0¥òeq = 150.5116 / 11
49.0o139.0o2391.913409.684.0672.422.2522.2630.00.7+0.540.83900.97171.0¥òeq = 149.0588 / 11
P616.4o155.4o885.114916.493.5681.922.5422.5530.00.7+0.540.82950.97171.0¥òeq = 151.1249 / 11
P716.4o171.8o99.715701.898.4686.822.6922.7030.00.7+0.540.82460.97171.0¥òeq = 152.21110 / 11
P88.2o180.0o015801.599.0687.422.7122.7230.00.7+0.540.82400.97170.8240.97171.0¥òeq = 152.34911 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.8240MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.9717MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1071.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19500.0001071.21071.29.9913.9816.4930.00.92300.9717¥òeq = 337.4651 / 11
P18.2o8.2o19400.399.71.01072.210.0014.0016.5030.00.92300.9717¥òeq = 338.0262 / 11
P216.4o24.6o18615.1884.98.71079.910.1014.1016.6030.00.92300.9717¥òeq = 323.4443 / 11
P316.4o41.0o17108.42391.623.51094.710.2914.2916.8030.00.92300.9717¥òeq = 331.6214 / 11
P445.0o86.0o10430.19069.988.91160.111.1515.1417.6530.00.88940.9717¥òeq = 333.7395 / 11
P54.0o90.0o9750.09750.095.61166.811.2315.2317.7430.00.88510.9717¥òeq = 332.256 / 11
49.0o139.0o2391.617108.4167.81239.012.1816.1718.6830.00.83900.9717¥òeq = 335.2568 / 11
P616.4o155.4o884.918615.1182.61253.812.3716.3718.8730.00.82950.9717¥òeq = 341.6899 / 11
P716.4o171.8o99.719400.3190.31261.512.4716.4718.9730.00.82460.9717¥òeq = 345.08510 / 11
P88.2o180.0o019500.0191.21262.412.4816.4818.9930.00.82400.9717¥òeq = 345.51711 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8240at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.071210.9232
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9717at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.263212.8811


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1071.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19503.00019500.00028.5030.00.92300.9717110.72801 / 11
P18.2o8.2o19403.30019400.399.71.028.5030.00.92300.9717110.72802 / 11
P216.4o24.6o18617.90018615.1884.98.728.5030.00.92300.9717110.72803 / 11
P316.4o41.0o17111.10017108.42391.623.528.5030.00.92300.9717110.72804 / 11
P445.0o86.0o10431.75369.833.610430.19069.988.928.5030.00.88940.9717110.72805 / 11
P54.0o90.0o9751.56050.037.99750.09750.095.628.5030.00.88510.9717110.72806 / 11
49.0o139.0o2391.913409.684.02391.617108.4167.828.5030.00.83900.9717110.72808 / 11
P616.4o155.4o885.114916.493.5884.918615.1182.628.5030.00.82950.9717110.72809 / 11
P716.4o171.8o99.715701.898.499.719400.3190.328.5030.00.82460.9717110.728010 / 11
P88.2o180.0o015801.599.0019500.0191.228.5030.00.82400.9717110.728011 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8240at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.071210.9232
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9717at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.263212.8811
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =110.7281.1291CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=110.728 kPa)
¡Ü Shell MaterialMATL =SA537-CL2
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =415.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 373.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =158.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =158.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 28.5 mm
Outside Radius of tank top headRo = 9780.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003643
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =37.99719 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =110.7280 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1071.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6619.713.9816.4928.7630.00.7+0.54#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o19.6619.714.0016.5028.7630.00.7+0.542 / 11
P216.4o24.6o19.6619.714.1016.6028.7630.00.7+0.543 / 11
P316.4o41.0o19.6619.714.2916.8028.7630.00.7+0.54#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o20.7620.715.1417.6528.7630.00.7+0.54#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o21.0320.815.2317.7428.7630.00.7+0.54#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o22.2522.316.1718.6828.7630.00.7+0.548 / 11
P616.4o155.4o22.5422.616.3718.8728.7630.00.7+0.54#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o22.6922.716.4718.9728.7630.00.7+0.54#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o22.7122.716.4818.9928.7630.00.7+0.5411 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm©÷(=1961.33 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2509.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o42.2242.330.4531.7026.4043.50.7+0.49#124.643.52733.58200.637,27221,8161 / 11
P18.2o8.2o42.2242.330.4631.7126.4043.50.7+0.492 / 11
P216.4o24.6o42.2242.330.5531.8026.4043.50.7+0.493 / 11
P316.4o41.0o42.2242.330.7331.9826.4043.50.7+0.49#216.443.52733.59060.646,54626,1834 / 11
P445.0o86.0o42.3442.431.5132.7626.4043.50.7+0.37#345.043.52720.87550.0226,092134,0325 / 11
P54.0o90.0o42.2642.531.5932.8426.40TD90USED0.7+0.30#453.044.52727.58934.0227,502165,0406 / 11
49.0o139.0o43.1843.332.4433.7026.4044.50.7+0.528 / 11
P616.4o155.4o43.3443.432.6233.8726.4044.50.7+0.37#516.444.52733.58860.646,69626,7849 / 11
P716.4o171.8o43.4243.532.7133.9726.4044.50.7+0.28#624.644.52733.58200.637,43922,31710 / 11
P88.2o180.0o43.4443.532.7233.9826.4044.50.7+0.2711 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 28.76 mm; Pe :101.32 kPa ¡Â Pa = 101.32 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003485; Factor_B = 36.346 MPa


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19500 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=345.982, N¥õ=23.717
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9751.5mm975.15cm
4¡¡L = Design Liquid levelL = 15800mm1580.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 24,194,769N2467179.8Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 158MPaS = 158.0MPa1611.152Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6390.639
10¡¡¥ã = Liquid Density¥ã = 6.266449E-6N/mm©ø639.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.89916degree0.41712radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 51.65338degree0.90152radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99664130.9966413
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08147641.0814764
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40512820.4051282
20¡¡C5 = 22 / ¥õC5 = 0.92053440.9205344
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40512820.4051282
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.891N-mm29.255Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 345.982N-mm3.528Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 23.717N-mm0.242Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3381.07N/mm3447.732Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2595.2N/mm2646.368Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.72mm2.272cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.03mm2.103cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 140.249MPa1430.142Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,007,688,585N-mm10275.564¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 384,220,949N-mm3917.963¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 505,907,962N-mm5158.826¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 182,149,862N-mm1857.412¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 221.761N/mm226.133Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 588,778,145N-mm6003.866¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 307,217,978N-mm3132.752¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 62,392,743mm©ø62.393¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,321,838,328mm©ø5321.838¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7429E-51.7429E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 5.995425E-35.995425E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2004.451mm200.445cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 55.563N/mm56.658Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 50,306,621N-mm512.985¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 25,256,335N-mm257.543¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 905,393mm©ø9053.928cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 253,803,952mm©ø253.804¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 280.325mm28.033cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 555.77mm55.577cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 297.413N/mm303.277Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 206.613N/mm210.687Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,678,933N171203.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 46438.879N4735.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7901.215mm790.122cm

piDeg=[23.89916138216077] piRad=[0.41711905458418425] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019503.0000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P18.219403.3000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P224.618617.9000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P34117111.1000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P48610431.75369.80.03360.6222868.89305.1323.003174.032891.89152.14 < OK 15820.7620.7021.5-0.063.713.0720.2320.5120.039
P5909751.56050.00.03790.62632868.89345.9823.72221.7655.56297.41206.613381.072595.20150.51 < OK 15821.0320.8422.0-0.194.743.4840.2390.5810.04Column Attached Equator Plate
1392391.913409.60.08400.67242868.89371.47447.953240.363316.85149.06 < OK 15822.2522.2623.50.015.663.744.510.6230.752
P6155.4885.114916.40.09350.68192868.89442.02469.493310.913338.38151.12 < OK 15822.5422.5523.50.014.354.4514.7270.7420.788
P7171.899.715701.80.09840.68682868.89478.22481.273347.113350.16152.21 < OK 15822.6922.7023.50.013.664.8154.8460.8030.808
P8180015801.50.09900.68742868.89482.79482.793351.683351.68152.35 < OK 15822.7122.7223.50.013.584.8614.8610.810.81


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19500 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=776.871, N¥õ=155.374
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9750mm975.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19500mm1950.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 39,315,021N4009016.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 373.5MPaS = 373.5MPa3808.64Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.96345degree0.41824radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99652280.9965228
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08421441.0842144
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40615380.4061538
20¡¡C5 = 22 / ¥õC5 = 0.91806470.9180647
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40615380.4061538
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.45N-mm29.25Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 776.871N-mm7.922Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 155.374N-mm1.584Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3914.37N/mm3991.547Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2541.77N/mm2591.884Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 10.18mm1.018cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 9.34mm0.934cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 317.148MPa3234.01Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,637,180,509N-mm16694.595¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 622,289,485N-mm6345.587¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 821,943,074N-mm8381.487¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 295,095,114N-mm3009.133¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 358.625N/mm365.696Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 956,792,497N-mm9756.568¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 499,138,647N-mm5089.798¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 36,017,275mm©ø36.017¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,360,909,205mm©ø5360.909¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7664E-51.7664E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.043657E-36.043657E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2009.377mm200.938cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 89.573N/mm91.339Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 81,722,547N-mm833.338¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 41,028,635N-mm418.376¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 912,359mm©ø9123.59cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 257,083,028mm©ø257.083¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 281.778mm28.178cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 558.626mm55.863cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 482.056N/mm491.56Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 335.181N/mm341.789Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,730,504N278433.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 75872.611N7736.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7920.0mm792.0cm

piDeg=[23.96345330703667] piRad=[0.4182411603557135] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019500.0000.58842868.452868.452868.45337.46 < OK 373.57.687.688.59.650000
P18.219400.399.70.00100.58942868.457.152.382875.602870.83338.03 < OK 373.57.697.698.59.500.0460.0150.0080.003
P224.618615.1884.90.00870.59712868.4563.8020.822932.252889.27323.44 < OK 373.57.797.799.013.400.4110.1340.0680.022
P34117108.42391.60.02350.61192868.45174.1754.503042.622922.95331.62 < OK 373.57.997.999.011.211.1210.3510.1870.058
P48610430.19069.90.08890.67732868.45713.25153.963581.703022.41333.74 < OK 373.58.948.8410.0-0.1010.654.5910.9910.7650.165
P5909750.09750.00.09560.6842868.45776.87155.37358.6389.57482.06335.183914.372541.77332.25 < OK 373.59.348.9310.5-0.4111.04510.8330.167Column Attached Equator Plate
1392391.617108.40.16780.75622868.45758.08877.743626.533746.19335.26 < OK 373.59.879.8711.010.244.8795.6490.8130.942
P6155.4884.918615.10.18260.7712868.45868.45911.433736.903779.88341.69 < OK 373.510.0610.0611.08.525.5895.8660.9320.978
P7171.899.719400.30.19030.77872868.45925.09929.873793.543798.32345.08 < OK 373.510.1610.1711.00.017.615.9545.9850.9920.997
P8180019500.00.19120.77962868.45932.24932.243800.693800.69345.52 < OK 373.510.1810.1811.07.496611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 281326.17
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19500
MRA(sWt[tid][20][10])= 1194.591
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12750mm
5. gCol[tid][5] =Upper Column HeightUCHT =3960mm
6. gCol[tid][6] =Lower Column HeightLCHT =8790mm
7. gCol[tid][7] =Column P.C.DPCD =19060mm
8. gCol[tid][8] =Brace AngleBRang =31.4208deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1946deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t30 ~ 30SHT58281.326343.218000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt30, t12¡¿3173¡¿3960SHT1115.52117.073000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8790LPCS1122.22522.225000,000000,0003
4BRACE ( PIPE, ¥è= 31.4208 deg.)null¨ª0¡¿0t ¡¿ 10300LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102319.072382.516000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1196.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19903.000588.4588.420.0320.0430.50.7+0.480.92030.96801.0¥òeq = 150.141 / 11
P18.2o8.2o19801.300588.420.0320.0430.50.7+0.480.92030.96801.0¥òeq = 150.142 / 11
P216.4o24.6o18999.800588.420.0320.0430.50.7+0.480.92030.96801.0¥òeq = 150.143 / 11
P316.4o41.0o17462.000588.420.0320.0430.50.7+0.480.92030.96801.0¥òeq = 150.144 / 11
P445.0o86.0o10645.75255.832.9621.321.1321.0730.50.7+0.480.88740.96801.0¥òeq = 151.295 / 11
P54.0o90.0o9951.55950.037.3625.721.3621.2130.50.7+0.480.88300.96801.0¥òeq = 149.4466 / 11
49.0o139.0o2441.013460.584.3672.722.6922.6930.50.7+0.480.83600.96801.0¥òeq = 152.1888 / 11
P616.4o155.4o903.214998.394.0682.422.9923.0030.50.7+0.480.82630.96801.0¥òeq = 150.919 / 11
P716.4o171.8o101.715799.899.0687.423.1523.1630.50.7+0.480.82130.96801.0¥òeq = 152.01610 / 11
P88.2o180.0o015901.599.6688.023.1723.1830.50.7+0.480.82070.96800.82070.9681.0¥òeq = 152.15711 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.8207MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.9680MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1066.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19900.0001066.91066.910.1914.2116.7630.50.92030.9680¥òeq = 325.2541 / 11
P18.2o8.2o19798.3101.71.01067.910.2014.2316.7830.50.92030.9680¥òeq = 325.8062 / 11
P216.4o24.6o18996.9903.18.91075.810.3114.3316.8830.50.92030.9680¥òeq = 330.1783 / 11
P316.4o41.0o17459.42440.623.91090.810.5114.5317.0830.50.92030.9680¥òeq = 338.6974 / 11
P445.0o86.0o10644.19255.990.81157.711.4015.4217.9730.50.88740.9680¥òeq = 341.6325 / 11
P54.0o90.0o9950.09950.097.61164.511.4915.5118.0630.50.88300.9680¥òeq = 339.0386 / 11
49.0o139.0o2440.617459.4171.21238.112.4716.4919.0530.50.83600.9680¥òeq = 343.6958 / 11
P616.4o155.4o903.118996.9186.31253.212.6716.7019.2530.50.82630.9680¥òeq = 335.1579 / 11
P716.4o171.8o101.719798.3194.21261.112.7816.8019.3530.50.82130.9680¥òeq = 338.5410 / 11
P88.2o180.0o019900.0195.21262.112.7916.8119.3730.50.82070.9680¥òeq = 338.97111 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8207at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.066910.8794
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9680at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.258412.8321


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1066.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19903.00019900.00029.0030.50.92030.9680110.08671 / 11
P18.2o8.2o19801.30019798.3101.71.029.0030.50.92030.9680110.08672 / 11
P216.4o24.6o18999.80018996.9903.18.929.0030.50.92030.9680110.08673 / 11
P316.4o41.0o17462.00017459.42440.623.929.0030.50.92030.9680110.08674 / 11
P445.0o86.0o10645.75255.832.910644.19255.990.829.0030.50.88740.9680110.08675 / 11
P54.0o90.0o9951.55950.037.39950.09950.097.629.0030.50.88300.9680110.08676 / 11
49.0o139.0o2441.013460.584.32440.617459.4171.229.0030.50.83600.9680110.08678 / 11
P616.4o155.4o903.214998.394.0903.118996.9186.329.0030.50.82630.9680110.08679 / 11
P716.4o171.8o101.715799.899.0101.719798.3194.229.0030.50.82130.9680110.086710 / 11
P88.2o180.0o015901.599.6019900.0195.229.0030.50.82070.9680110.086711 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8207at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.066910.8794
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9680at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.258412.8321
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =110.08671.1226CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=110.0867 kPa)
¡Ü Shell MaterialMATL =SA537-CL2
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =415.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 373.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =158.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =158.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 29.0 mm
Outside Radius of tank top headRo = 9980.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003632
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =37.88689 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =110.0867 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1066.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0320.014.2116.7629.3230.50.7+0.48#124.630.52848.08544.135,53516,6051 / 11
P18.2o8.2o20.0320.014.2316.7829.3230.50.7+0.482 / 11
P216.4o24.6o20.0320.014.3316.8829.3230.50.7+0.483 / 11
P316.4o41.0o20.0320.014.5317.0829.3230.50.7+0.48#216.430.52848.09431.744,98219,9284 / 11
P445.0o86.0o21.1321.115.4217.9729.3230.50.7+0.48#345.030.52834.87860.0224,637102,0135 / 11
P54.0o90.0o21.3621.215.5118.0629.3230.50.7+0.48#453.030.52841.79304.0225,581122,7926 / 11
49.0o139.0o22.6922.716.4919.0529.3230.50.7+0.488 / 11
P616.4o155.4o22.9923.016.7019.2529.3230.50.7+0.48#516.430.52848.09231.744,98219,9289 / 11
P716.4o171.8o23.1523.216.8019.3529.3230.50.7+0.48#624.630.52848.08544.135,53516,60510 / 11
P88.2o180.0o23.1723.216.8119.3729.3230.50.7+0.4811 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1071.2 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6619.713.9816.4928.7630.00.7+0.54#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o19.6619.714.0016.5028.7630.00.7+0.542 / 11
P216.4o24.6o19.6619.714.1016.6028.7630.00.7+0.543 / 11
P316.4o41.0o19.6619.714.2916.8028.7630.00.7+0.54#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o20.7620.715.1417.6528.7630.00.7+0.54#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o21.0320.815.2317.7428.76TD90USED0.7+0.54#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o22.2522.316.1718.6828.7630.00.7+0.548 / 11
P616.4o155.4o22.5422.616.3718.8728.7630.00.7+0.54#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o22.6922.716.4718.9728.7630.00.7+0.54#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o22.7122.716.4818.9928.7630.00.7+0.5411 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 29.32 mm; Pe :101.32 kPa ¡Â Pa = 101.33 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003485; Factor_B = 36.347 MPa


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19900 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 41600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=348.938, N¥õ=22.107
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19900mm1990.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9951.5mm995.15cm
4¡¡L = Design Liquid levelL = 15900mm1590.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 25,441,515N2594312.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 158MPaS = 158.0MPa1611.152Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6390.639
10¡¡¥ã = Liquid Density¥ã = 6.266449E-6N/mm©ø639.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1016.0mm101.6cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.71409degree0.43134radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 53.28037degree0.92992radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99511610.9951161
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11607871.1160787
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41809050.4180905
20¡¡C5 = 22 / ¥õC5 = 0.89018050.8901805
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41809050.4180905
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2927.731N-mm29.855Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 348.938N-mm3.558Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 22.107N-mm0.225Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3435.31N/mm3503.041Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2653.49N/mm2705.807Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 23.18mm2.318cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.36mm2.136cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 139.483MPa1422.331Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,081,346,670N-mm11026.667¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 396,386,303N-mm4042.015¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 542,887,850N-mm5535.915¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 188,557,230N-mm1922.749¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 214.874N/mm219.111Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 633,667,137N-mm6461.607¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 329,791,715N-mm3362.94¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 70,776,564mm©ø70.777¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 6,231,816,825mm©ø6231.817¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0601E-52.0601E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.62588E-36.62588E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2113.18mm211.318cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 56.232N/mm57.341Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 58,567,250N-mm597.22¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 29,403,566N-mm299.833¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,041,524mm©ø10415.239cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 318,426,657mm©ø318.427¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 305.731mm30.573cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 605.772mm60.577cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 296.348N/mm302.191Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 202.069N/mm206.053Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,738,263N177253.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 56797.521N5791.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 8321.254mm832.125cm

piDeg=[24.71408833429126] piRad=[0.4313422130621035] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19900 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 41600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019903.0000.58842927.732927.732927.73150.14 < OK 15820.0320.0421.00.014.970000
P18.219801.3000.58842927.732927.732927.73150.14 < OK 15820.0320.0421.00.014.970000
P224.618999.8000.58842927.732927.732927.73150.14 < OK 15820.0320.0421.00.014.970000
P34117462.0000.58842927.732927.732927.73150.14 < OK 15820.0320.0421.00.014.970000
P48610645.75255.80.03290.62132927.73306.3821.383234.112949.11151.29 < OK 15821.1321.0722.0-0.064.252.9620.2070.4940.034
P5909951.55950.00.03730.62572927.73348.9422.11214.8756.23296.35202.073435.312653.49149.45 < OK 15821.3621.2122.5-0.155.413.3740.2140.5620.036Column Attached Equator Plate
1392441.013460.50.08430.67272927.73379.87459.533307.603387.26152.19 < OK 15822.6922.7023.50.013.683.6734.4430.6120.74
P6155.4903.214998.30.09400.68242927.73453.35481.953381.083409.69150.91 < OK 15822.9923.0024.00.014.494.3834.660.7310.777
P7171.8101.715799.80.09900.68742927.73491.05494.233418.783421.96152.02 < OK 15823.1523.1624.00.013.794.7484.7780.7910.796
P8180015901.50.09960.6882927.73495.81495.813423.543423.54152.16 < OK 15823.1723.1824.00.013.704.7944.7940.7990.799


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19900 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 41700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=809.069, N¥õ=161.814
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19900mm1990.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9950mm995.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19900mm1990.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 41,805,739N4262999.0Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 373.5MPaS = 373.5MPa3808.64Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1016.0mm101.6cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.77749degree0.43245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99499530.9949953
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11876161.1187616
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41909550.4190955
20¡¡C5 = 22 / ¥õC5 = 0.88790250.8879025
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41909550.4190955
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2927.29N-mm29.85Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 809.069N-mm8.25Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 161.814N-mm1.65Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3996.14N/mm4074.929Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2603.31N/mm2654.637Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 10.44mm1.044cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 9.53mm0.953cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 309.557MPa3156.603Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,776,611,286N-mm18116.393¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 649,271,969N-mm6620.732¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 891,944,006N-mm9095.298¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 308,930,154N-mm3150.211¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 351.488N/mm358.418Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,041,339,322N-mm10618.706¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 541,860,896N-mm5525.443¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 41,477,264mm©ø41.477¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 6,275,251,496mm©ø6275.251¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0866E-52.0866E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.67669E-36.67669E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2118.113mm211.811cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 91.704N/mm93.512Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 96,211,056N-mm981.08¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 48,302,561N-mm492.549¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,049,151mm©ø10491.511cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 322,342,495mm©ø322.342¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 307.241mm30.724cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 608.734mm60.873cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 485.789N/mm495.367Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 331.537N/mm338.074Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,858,834N291519.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 93816.378N9566.6Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 8340.0mm834.0cm

piDeg=[24.77749436195018] piRad=[0.4324488570103622] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19900 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 41700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019900.0000.58842927.292927.292927.29325.25 < OK 373.57.847.849.012.920000
P18.219798.3101.70.00100.58942927.297.452.482934.742929.77325.81 < OK 373.57.857.859.012.770.0460.0150.0080.003
P224.618996.9903.10.00890.59732927.2966.4421.682993.732948.97330.18 < OK 373.57.967.969.011.600.4110.1340.0680.022
P34117459.42440.60.02390.61232927.29181.3956.763108.682984.05338.70 < OK 373.58.168.169.09.321.1210.3510.1870.058
P48610644.19255.90.09080.67922927.29742.82160.343670.113087.63341.63 < OK 373.59.159.0510.0-0.108.534.5910.9910.7650.165
P5909950.09950.00.09760.6862927.29809.07161.81351.4991.70485.79331.543996.142603.31339.04 < OK 373.59.539.1410.5-0.399.23510.8330.167Column Attached Equator Plate
1392440.617459.40.17120.75962927.29789.50914.123716.793841.41343.70 < OK 373.510.1210.1211.07.984.8795.6490.8130.942
P6155.4903.118996.90.18630.77472927.29904.44949.203831.733876.49335.16 < OK 373.510.3210.3211.510.275.5895.8660.9320.978
P7171.8101.719798.30.19420.78262927.29963.43968.413890.723895.70338.54 < OK 373.510.4210.4311.50.019.365.9545.9850.9920.997
P8180019900.00.19520.78362927.29970.88970.883898.173898.17338.97 < OK 373.510.4410.4411.59.246611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 297869.132
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19900
MRA(sWt[tid][20][10])= 1244.102
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =1016mm
3. gCol[tid][3] =Column thkthk =11.13mm
4. gCol[tid][4] =Tank HeightHtank =12950mm
5. gCol[tid][5] =Upper Column HeightUCHT =4170mm
6. gCol[tid][6] =Lower Column HeightLCHT =8780mm
7. gCol[tid][7] =Column P.C.DPCD =19410mm
8. gCol[tid][8] =Brace AngleBRang =31.9158deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.741deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t30.5 ~ 30.5SHT58297.869363.400000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt30.5, t13¡¿3492¡¿4170SHT1119.22821.150000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1016¡¿11.13t ¡¿ 8780LPCS1126.63726.637000,000000,0003
4BRACE ( PIPE, ¥è= 31.9158 deg.)null¨ª0¡¿0t ¡¿ 10344LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102343.734411.188000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1199.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19503.000588.4588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9941 / 11
P18.2o8.2o19403.300588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9942 / 11
P216.4o24.6o18617.900588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9943 / 11
P316.4o41.0o17111.100588.419.6619.6630.00.7+0.540.92300.97171.0¥òeq = 150.9944 / 11
P445.0o86.0o10431.75219.830.8619.220.6620.6230.00.7+0.540.89220.97171.0¥òeq = 151.3645 / 11
P54.0o90.0o9751.55900.034.8623.220.8820.7430.00.7+0.540.88820.97171.0¥òeq = 149.3796 / 11
49.0o139.0o2391.913259.678.1666.522.0722.0830.00.7+0.540.84490.97171.0¥òeq = 151.1878 / 11
P616.4o155.4o885.114766.487.0675.422.3422.3530.00.7+0.540.83600.97171.0¥òeq = 149.6969 / 11
P716.4o171.8o99.715551.891.7680.122.4922.5030.00.7+0.540.83130.97171.0¥òeq = 150.71810 / 11
P88.2o180.0o015651.592.2680.622.5022.5130.00.7+0.540.83080.97170.83080.97171.0¥òeq = 150.84811 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.8308MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.9717MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1080 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19500.0001080.01080.09.9914.1016.4930.00.92300.9717¥òeq = 337.4651 / 11
P18.2o8.2o19400.399.71.01081.010.0014.1116.5030.00.92300.9717¥òeq = 338.0262 / 11
P216.4o24.6o18615.1884.98.71088.710.1014.2116.6030.00.92300.9717¥òeq = 323.4443 / 11
P316.4o41.0o17108.42391.623.51103.510.2914.4116.8030.00.92300.9717¥òeq = 331.6214 / 11
P445.0o86.0o10430.19069.988.91168.911.1515.2617.6530.00.89220.9717¥òeq = 333.7395 / 11
P54.0o90.0o9750.09750.095.61175.611.2315.3517.7430.00.88820.9717¥òeq = 332.256 / 11
49.0o139.0o2391.617108.4167.81247.812.1816.2918.6830.00.84490.9717¥òeq = 335.2568 / 11
P616.4o155.4o884.918615.1182.61262.612.3716.4818.8730.00.83600.9717¥òeq = 341.6899 / 11
P716.4o171.8o99.719400.3190.31270.312.4716.5818.9730.00.83130.9717¥òeq = 345.08510 / 11
P88.2o180.0o019500.0191.21271.212.4816.5918.9930.00.83080.9717¥òeq = 345.51711 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8308at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.080011.0129
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9717at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.263212.8811


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1080 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19503.00019500.00028.5030.00.92300.9717110.72801 / 11
P18.2o8.2o19403.30019400.399.71.028.5030.00.92300.9717110.72802 / 11
P216.4o24.6o18617.90018615.1884.98.728.5030.00.92300.9717110.72803 / 11
P316.4o41.0o17111.10017108.42391.623.528.5030.00.92300.9717110.72804 / 11
P445.0o86.0o10431.75219.830.810430.19069.988.928.5030.00.89220.9717110.72805 / 11
P54.0o90.0o9751.55900.034.89750.09750.095.628.5030.00.88820.9717110.72806 / 11
49.0o139.0o2391.913259.678.12391.617108.4167.828.5030.00.84490.9717110.72808 / 11
P616.4o155.4o885.114766.487.0884.918615.1182.628.5030.00.83600.9717110.72809 / 11
P716.4o171.8o99.715551.891.799.719400.3190.328.5030.00.83130.9717110.728010 / 11
P88.2o180.0o015651.592.2019500.0191.228.5030.00.83080.9717110.728011 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.8308at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.080011.0129
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9717at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.263212.8811
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =110.7281.1291CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=110.728 kPa)
¡Ü Shell MaterialMATL =SA537-CL2
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =415.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 373.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =158.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =158.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 28.5 mm
Outside Radius of tank top headRo = 9780.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003643
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =37.99719 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =110.7280 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1080 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6619.714.1016.4928.7630.00.7+0.54#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o19.6619.714.1116.5028.7630.00.7+0.542 / 11
P216.4o24.6o19.6619.714.2116.6028.7630.00.7+0.543 / 11
P316.4o41.0o19.6619.714.4116.8028.7630.00.7+0.54#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o20.6620.615.2617.6528.7630.00.7+0.54#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o20.8820.715.3517.7428.7630.00.7+0.54#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o22.0722.116.2918.6828.7630.00.7+0.548 / 11
P616.4o155.4o22.3422.416.4818.8728.7630.00.7+0.54#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o22.4922.516.5818.9728.7630.00.7+0.54#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o22.5022.516.5918.9928.7630.00.7+0.5411 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1066.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0320.014.2116.7629.3230.50.7+0.48#124.630.52848.08544.135,53516,6051 / 11
P18.2o8.2o20.0320.014.2316.7829.3230.50.7+0.482 / 11
P216.4o24.6o20.0320.014.3316.8829.3230.50.7+0.483 / 11
P316.4o41.0o20.0320.014.5317.0829.3230.50.7+0.48#216.430.52848.09431.744,98219,9284 / 11
P445.0o86.0o21.1321.115.4217.9729.3230.50.7+0.48#345.030.52834.87860.0224,637102,0135 / 11
P54.0o90.0o21.3621.215.5118.0629.32TD90USED0.7+0.48#453.030.52841.79304.0225,581122,7926 / 11
49.0o139.0o22.6922.716.4919.0529.3230.50.7+0.488 / 11
P616.4o155.4o22.9923.016.7019.2529.3230.50.7+0.48#516.430.52848.09231.744,98219,9289 / 11
P716.4o171.8o23.1523.216.8019.3529.3230.50.7+0.48#624.630.52848.08544.135,53516,60510 / 11
P88.2o180.0o23.1723.216.8119.3729.3230.50.7+0.4811 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 28.76 mm; Pe :101.32 kPa ¡Â Pa = 101.32 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003485; Factor_B = 36.346 MPa


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19500 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=318.404, N¥õ=20.688
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9751.5mm975.15cm
4¡¡L = Design Liquid levelL = 15650mm1565.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 22,719,608N2316755.3Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 158MPaS = 158.0MPa1611.152Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6010.601
10¡¡¥ã = Liquid Density¥ã = 5.893797E-6N/mm©ø601.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.89916degree0.41712radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.76863degree0.92099radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99664130.9966413
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08147641.0814764
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40512820.4051282
20¡¡C5 = 22 / ¥õC5 = 0.92053440.9205344
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40512820.4051282
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.891N-mm29.255Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 318.404N-mm3.247Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 20.688N-mm0.211Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3343.36N/mm3409.278Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2610.3N/mm2661.765Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.51mm2.251cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 20.88mm2.088cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 139.194MPa1419.384Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 946,249,565N-mm9649.06¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 360,794,904N-mm3679.084¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 475,062,629N-mm4844.291¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 171,044,140N-mm1744.165¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 208.24N/mm212.346Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 552,880,197N-mm5637.809¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 288,486,823N-mm2941.747¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 62,392,743mm©ø62.393¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,321,838,328mm©ø5321.838¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7429E-51.7429E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 5.995425E-35.995425E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2004.451mm200.445cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 52.176N/mm53.205Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 47,239,414N-mm481.708¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 23,716,450N-mm241.84¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 905,393mm©ø9053.928cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 253,803,952mm©ø253.804¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 280.325mm28.033cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 555.77mm55.577cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 279.28N/mm284.786Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 194.016N/mm197.841Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,576,568N160765.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 43607.489N4446.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7901.215mm790.122cm

piDeg=[23.89916138216077] piRad=[0.41711905458418425] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Sd=158 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019503.0000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P18.219403.3000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P224.618617.9000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P34117111.1000.58842868.892868.892868.89150.99 < OK 15819.6619.6620.54.430000
P48610431.75219.80.03080.61922868.89279.9720.023148.862888.92151.36 < OK 15820.6620.6121.5-0.054.202.9970.2140.50.036
P5909751.55900.00.03480.62322868.89318.4020.69208.2452.18279.28194.023343.362610.30149.38 < OK 15820.8820.7422.0-0.145.463.4090.2210.5680.037Column Attached Equator Plate
1392391.913259.60.07810.66652868.89345.07417.013213.963285.90151.19 < OK 15822.0722.0823.00.014.313.6944.4640.6160.744
P6155.4885.114766.40.08700.67542868.89411.42437.263280.313306.15149.70 < OK 15822.3422.3523.50.015.264.4054.6810.7340.78
P7171.899.715551.80.09170.68012868.89445.47448.343314.363317.23150.72 < OK 15822.4922.5023.50.014.614.7694.80.7950.8
P8180015651.50.09220.68062868.89449.77449.773318.663318.66150.85 < OK 15822.5022.5123.50.014.534.8154.8150.8030.803


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19500 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=776.871, N¥õ=155.374
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9750mm975.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19500mm1950.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 39,315,021N4009016.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 373.5MPaS = 373.5MPa3808.64Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.96345degree0.41824radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99652280.9965228
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08421441.0842144
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40615380.4061538
20¡¡C5 = 22 / ¥õC5 = 0.91806470.9180647
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40615380.4061538
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.45N-mm29.25Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 776.871N-mm7.922Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 155.374N-mm1.584Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3914.37N/mm3991.547Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2541.77N/mm2591.884Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 10.18mm1.018cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 9.34mm0.934cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 317.148MPa3234.01Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,637,180,509N-mm16694.595¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 622,289,485N-mm6345.587¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 821,943,074N-mm8381.487¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 295,095,114N-mm3009.133¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 358.625N/mm365.696Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 956,792,497N-mm9756.568¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 499,138,647N-mm5089.798¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 36,017,275mm©ø36.017¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,360,909,205mm©ø5360.909¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7664E-51.7664E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.043657E-36.043657E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2009.377mm200.938cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 89.573N/mm91.339Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 81,722,547N-mm833.338¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 41,028,635N-mm418.376¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 912,359mm©ø9123.59cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 257,083,028mm©ø257.083¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 281.778mm28.178cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 558.626mm55.863cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 482.056N/mm491.56Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 335.181N/mm341.789Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,730,504N278433.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 75872.611N7736.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7920.0mm792.0cm

piDeg=[23.96345330703667] piRad=[0.4182411603557135] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Syt=373.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019500.0000.58842868.452868.452868.45337.46 < OK 373.57.687.688.59.650000
P18.219400.399.70.00100.58942868.457.152.382875.602870.83338.03 < OK 373.57.697.698.59.500.0460.0150.0080.003
P224.618615.1884.90.00870.59712868.4563.8020.822932.252889.27323.44 < OK 373.57.797.799.013.400.4110.1340.0680.022
P34117108.42391.60.02350.61192868.45174.1754.503042.622922.95331.62 < OK 373.57.997.999.011.211.1210.3510.1870.058
P48610430.19069.90.08890.67732868.45713.25153.963581.703022.41333.74 < OK 373.58.948.8410.0-0.1010.654.5910.9910.7650.165
P5909750.09750.00.09560.6842868.45776.87155.37358.6389.57482.06335.183914.372541.77332.25 < OK 373.59.348.9310.5-0.4111.04510.8330.167Column Attached Equator Plate
1392391.617108.40.16780.75622868.45758.08877.743626.533746.19335.26 < OK 373.59.879.8711.010.244.8795.6490.8130.942
P6155.4884.918615.10.18260.7712868.45868.45911.433736.903779.88341.69 < OK 373.510.0610.0611.08.525.5895.8660.9320.978
P7171.899.719400.30.19030.77872868.45925.09929.873793.543798.32345.08 < OK 373.510.1610.1711.00.017.615.9545.9850.9920.997
P8180019500.00.19120.77962868.45932.24932.243800.693800.69345.52 < OK 373.510.1810.1811.07.496611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 281326.17
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19500
MRA(sWt[tid][20][10])= 1194.591
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12750mm
5. gCol[tid][5] =Upper Column HeightUCHT =3960mm
6. gCol[tid][6] =Lower Column HeightLCHT =8790mm
7. gCol[tid][7] =Column P.C.DPCD =19060mm
8. gCol[tid][8] =Brace AngleBRang =31.4208deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1946deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t30 ~ 30SHT58281.326343.218000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt30, t12¡¿3173¡¿3960SHT1115.52117.073000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8790LPCS1122.22522.225000,000000,0003
4BRACE ( PIPE, ¥è= 31.4208 deg.)null¨ª0¡¿0t ¡¿ 10300LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102319.072382.516000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2492.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19103.0001961.31961.348.1048.2149.00.7+0.091.99422.05731.0¥òeq = 197.1931 / 11
P18.2o8.2o19005.3001961.348.1048.2149.00.7+0.091.99422.05731.0¥òeq = 197.1932 / 11
P216.4o24.6o18236.1001961.348.1048.2149.00.7+0.091.99422.05731.0¥òeq = 197.1933 / 11
P316.4o41.0o16760.1001961.348.1048.2149.00.7+0.091.99422.05731.0¥òeq = 197.1934 / 11
P445.0o86.0o10217.81083.75.61966.948.2348.3549.50.7+0.452.00952.07831.0¥òeq = 195.6985 / 11
P54.0o90.0o9551.51750.09.01970.348.1448.4350.50.7+0.372.00612.07831.0¥òeq = 197.3426 / 11
49.0o139.0o2342.98958.646.22007.549.2049.3250.50.7+0.482.01082.12021.0¥òeq = 195.6648 / 11
P616.4o155.4o866.910434.653.82015.149.3849.5050.50.7+0.302.00322.12021.0¥òeq = 196.4039 / 11
P716.4o171.8o97.711203.857.82019.149.4749.5950.50.7+0.211.99922.12021.0¥òeq = 196.78910 / 11
P88.2o180.0o011301.558.32019.649.4949.6150.50.7+0.191.99872.12021.99422.05731.0¥òeq = 196.83911 / 11
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.9613MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.9942MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.0573MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2492.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19100.0002492.82492.835.7836.3937.5449.01.99422.0573¥òeq = 317.4651 / 11
P18.2o8.2o19002.497.61.02493.835.8036.4037.5549.01.99422.0573¥òeq = 317.622 / 11
P216.4o24.6o18233.2866.88.52501.335.9136.5137.6649.01.99422.0573¥òeq = 318.8433 / 11
P316.4o41.0o16757.52342.523.02515.836.1236.7237.8849.01.99422.0573¥òeq = 315.8474 / 11
P445.0o86.0o10216.28883.887.12579.937.0637.6638.8149.52.00952.0783¥òeq = 315.8795 / 11
P54.0o90.0o9550.09550.093.72586.537.1537.7638.9150.52.00612.0783¥òeq = 315.8516 / 11
49.0o139.0o2342.516757.5164.32657.138.1938.7939.9450.52.01082.1202¥òeq = 317.28 / 11
P616.4o155.4o866.818233.2178.82671.638.4039.0040.1550.52.00322.1202¥òeq = 319.3469 / 11
P716.4o171.8o97.619002.4186.32679.138.5139.1140.2650.51.99922.1202¥òeq = 315.53910 / 11
P88.2o180.0o019100.0187.32680.138.5239.1340.2850.51.99872.1202¥òeq = 315.6811 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.9942at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.492825.4195
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0573at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.571626.2230


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2492.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19103.00019100.00047.5049.01.99422.0573367.06051 / 11
P18.2o8.2o19005.30019002.497.61.047.5049.01.99422.0573367.06052 / 11
P216.4o24.6o18236.10018233.2866.88.547.5049.01.99422.0573367.06053 / 11
P316.4o41.0o16760.10016757.52342.523.047.5049.01.99422.0573367.06054 / 11
P445.0o86.0o10217.81083.75.610216.28883.887.148.0049.52.00952.0783374.78975 / 11
P54.0o90.0o9551.51750.09.09550.09550.093.748.0049.52.00612.0783374.78976 / 11
49.0o139.0o2342.98958.646.22342.516757.5164.349.0050.52.01082.1202390.48728 / 11
P616.4o155.4o866.910434.653.8866.818233.2178.849.0050.52.00322.1202390.48729 / 11
P716.4o171.8o97.711203.857.897.619002.4186.349.0050.51.99922.1202390.487210 / 11
P88.2o180.0o011301.558.3019100.0187.349.0050.51.99872.1202390.487211 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.9613at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.451725.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.9942at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.492825.4195
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.0573at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.571626.2230
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL1
Maximum. Allowable External PressureMAEP =367.06053.7430CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=367.0605 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm2(=1961.33 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2492.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o48.1048.236.3937.5426.4049.00.7+0.09#124.649.02733.58200.638,19124,5741 / 11
P18.2o8.2o48.1048.236.4037.5526.4049.00.7+0.092 / 11
P216.4o24.6o48.1048.236.5137.6626.4049.00.7+0.093 / 11
P316.4o41.0o48.1048.236.7237.8826.4049.00.7+0.09#216.449.02733.59060.647,37329,4934 / 11
P445.0o86.0o48.2348.437.6638.8126.4049.50.7+0.45#345.049.52720.87550.0226,933152,5195 / 11
P54.0o90.0o48.1448.437.7638.9126.4050.50.7+0.37#453.050.52727.58934.0228,513187,2936 / 11
49.0o139.0o49.2049.338.7939.9426.4050.50.7+0.488 / 11
P616.4o155.4o49.3849.539.0040.1526.4050.50.7+0.30#516.450.52733.58860.647,59930,3969 / 11
P716.4o171.8o49.4749.639.1140.2626.4050.50.7+0.21#624.650.52733.58200.638,44225,32610 / 11
P88.2o180.0o49.4949.639.1340.2826.4050.50.7+0.1911 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1080 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6619.714.1016.4928.7630.00.7+0.54#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o19.6619.714.1116.5028.7630.00.7+0.542 / 11
P216.4o24.6o19.6619.714.2116.6028.7630.00.7+0.543 / 11
P316.4o41.0o19.6619.714.4116.8028.7630.00.7+0.54#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o20.6620.615.2617.6528.7630.00.7+0.54#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o20.8820.715.3517.7428.76TD90USED0.7+0.54#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o22.0722.116.2918.6828.7630.00.7+0.548 / 11
P616.4o155.4o22.3422.416.4818.8728.7630.00.7+0.54#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o22.4922.516.5818.9728.7630.00.7+0.54#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o22.5022.516.5918.9928.7630.00.7+0.5411 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.4 mm; Pe :101.32 kPa ¡Â Pa = 101.34 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.976; Fic=38.976 MPa; Fha=19.488 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [7 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19100 (cm), Sd=201 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=85.739, N¥õ=0.482
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9551.5mm955.15cm
4¡¡L = Design Liquid levelL = 11300mm1130.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 16,422,692N1674648.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 201MPaS = 201.0MPa2049.63Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5260.526
10¡¡¥ã = Liquid Density¥ã = 5.158298E-6N/mm©ø526.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.97153degree0.41838radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 79.44279degree1.38654radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99650790.9965079
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08455841.0845584
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40628270.4062827
20¡¡C5 = 22 / ¥õC5 = 0.91775520.9177552
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40628270.4062827
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9366.678N-mm95.514Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 85.739N-mm0.874Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 0.482N-mm0.482Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 9566.29N/mm9754.901Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9161.68N/mm9342.314Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 49.61mm4.961cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 48.14mm4.814cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 191.301MPa1950.727Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 669,960,748N-mm6831.698¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 254,550,870N-mm2595.696¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 336,352,402N-mm3429.84¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 120,714,483N-mm1230.945¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 152.823N/mm155.836Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 391,545,881N-mm3992.657¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 204,255,912N-mm2082.831¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 129,385,033mm©ø129.385¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,045,022,834mm©ø5045.023¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7694E-51.7694E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.049737E-36.049737E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1969.112mm196.911cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 38.947N/mm39.715Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 34,135,996N-mm348.09¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 17,137,906N-mm174.758¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 876,464mm©ø8764.642cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 242,102,401mm©ø242.102¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 276.226mm27.623cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 547.615mm54.762cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 205.48N/mm209.531Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 141.862N/mm144.659Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,133,396N115574.3Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 32373.709N3301.2Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7761.219mm776.122cm

piDeg=[23.971534139659223] piRad=[0.4183821974912797] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Sd=201 MPa, Pg=1.9613 (kg/cm©÷), HT_UPPCOL = 38800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019103.0001.96139366.689366.689366.68197.19 < OK 20148.1048.2149.00.111.890000
P18.219005.3001.96139366.689366.689366.68197.19 < OK 20148.1048.2149.00.111.890000
P224.618236.1001.96139366.689366.689366.68197.19 < OK 20148.1048.2149.00.111.890000
P34116760.1001.96139366.689366.689366.68197.19 < OK 20148.1048.2149.00.111.890000
P48610217.81083.70.00561.96699366.6853.070.339419.759367.01195.70 < OK 20148.2348.3549.50.122.640.6770.0040.1130.001
P5909551.51750.00.00901.97039366.6885.740.48152.8238.95205.48141.869566.299161.68197.34 < OK 20148.1448.4349.00.291.821.0930.0060.1820.001Column Attached Equator Plate
1392342.98958.60.04622.00759366.68190.49250.909557.179617.57195.66 < OK 20149.2049.3250.50.122.652.4293.1990.4050.533
P6155.4866.910434.60.05382.01519366.68246.21267.909612.889634.58196.40 < OK 20149.3849.5050.50.122.293.1393.4160.5230.569
P7171.897.711203.80.05782.01919366.68274.80277.219641.489643.89196.79 < OK 20149.4749.5950.50.122.103.5043.5340.5840.589
P8180011301.50.05832.01969366.68278.41278.419645.099645.09196.84 < OK 20149.4949.6150.50.122.073.553.550.5920.592


S-Tank Engineering
Spherical Tank Calculation [7 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19100 (cm), Syt=327.75 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=745.326, N¥õ=149.065
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19100mm1910.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9550mm955.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19100mm1910.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 39,263,284N4003740.7Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 327.75MPaS = 327.75MPa3342.12Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.961MPa20.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.10292degree0.42068radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99626470.9962647
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09014891.0901489
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40837700.4083770
20¡¡C5 = 22 / ¥õC5 = 0.91275250.9127525
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40837700.4083770
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9365.208N-mm95.499Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 745.326N-mm7.6Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 149.065N-mm1.52Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 10380.71N/mm10585.378Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9025.61N/mm9203.561Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 31.35mm3.135cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 29.87mm2.987cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 301.273MPa3072.13Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,601,487,022N-mm16330.623¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 604,612,928N-mm6165.336¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 804,023,234N-mm8198.755¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 286,885,043N-mm2925.413¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 361.771N/mm368.904Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 936,386,811N-mm9548.488¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 488,272,522N-mm4978.994¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 102,239,395mm©ø102.239¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,123,036,038mm©ø5123.036¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8183E-51.8183E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.149165E-36.149165E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1979.275mm197.928cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 91.594N/mm93.4Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 81,565,765N-mm831.739¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 40,949,923N-mm417.573¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 890,515mm©ø8905.154cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 248,624,515mm©ø248.625¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 279.192mm27.919cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 553.441mm55.344cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 488.659N/mm498.294Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 338.005N/mm344.669Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,714,687N276821.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 78249.348N7979.2Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7800.0mm780.0cm

piDeg=[24.10291888089687] piRad=[0.4206752938127573] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19100 (cm), Syt=327.75 MPa, MAWP=2.451625 (kg/cm©÷), HT_UPPCOL = 39000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019100.0001.96139365.219365.219365.21317.46 < OK 327.7528.5728.6229.50.053.140000
P18.219002.497.60.00101.96239365.216.862.289372.079367.49317.62 < OK 327.7528.5928.6329.50.043.090.0460.0150.0080.003
P224.618233.2866.80.00851.96989365.2161.2119.979426.419385.18318.84 < OK 327.7528.7028.7429.50.042.720.4110.1340.0680.022
P34116757.52342.50.02301.98439365.21167.0952.299532.309417.50315.85 < OK 327.7528.9128.9530.00.043.631.1210.3510.1870.058
P48610216.28883.80.08712.04849365.21684.29147.7110049.509512.92315.88 < OK 327.7529.8829.8931.00.013.624.5910.9910.7650.165
P5909550.09550.00.09372.0559365.21745.33149.07361.7791.59488.66338.0010380.719025.61315.85 < OK 327.7529.8729.9931.00.123.63510.8330.167Column Attached Equator Plate
1392342.516757.50.16432.12569365.21727.30842.1010092.5010207.31317.20 < OK 327.7530.9731.0232.00.053.224.8795.6490.8130.942
P6155.4866.818233.20.17882.14019365.21833.19874.4210198.3910239.63319.35 < OK 327.7531.1831.2332.00.052.565.5895.8660.9320.978
P7171.897.619002.40.18632.14769365.21887.53892.1110252.7410257.32315.54 < OK 327.7531.2931.3432.50.053.735.9545.9850.9920.997
P8180019100.00.18732.14869365.21894.39894.3910259.6010259.60315.68 < OK 327.7531.3031.3532.50.053.686611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 449600.851
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19100
MRA(sWt[tid][20][10])= 1146.086
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12550mm
5. gCol[tid][5] =Upper Column HeightUCHT =3900mm
6. gCol[tid][6] =Lower Column HeightLCHT =8650mm
7. gCol[tid][7] =Column P.C.DPCD =18680mm
8. gCol[tid][8] =Brace AngleBRang =31.3168deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.0377deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL1t49 ~ 50.5SHT58449.601548.513000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt50.5, t12¡¿3173¡¿3900SHT1116.79918.479000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8650LPCS1121.87121.871000,000000,0003
4BRACE ( PIPE, ¥è= 31.3168 deg.)null¨ª0¡¿0t ¡¿ 10125LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102488.271588.863000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1048.1 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19503.000588.4588.422.2922.3030.00.7+0.400.80620.84871.0¥òeq = 130.4041 / 11
P18.2o8.2o19403.300588.422.2922.3030.00.7+0.400.80620.84871.0¥òeq = 130.4042 / 11
P216.4o24.6o18617.900588.422.2922.3030.00.7+0.400.80620.84871.0¥òeq = 130.4043 / 11
P316.4o41.0o17111.100588.422.2922.3030.00.7+0.400.80620.84871.0¥òeq = 130.4044 / 11
P445.0o86.0o10431.75369.833.6622.023.5523.4930.00.7+0.400.77260.84871.0¥òeq = 132.2955 / 11
P54.0o90.0o9751.56050.037.9626.323.8723.6430.00.7+0.400.76830.84871.0¥òeq = 131.3356 / 11
49.0o139.0o2391.913409.684.0672.425.2625.2730.00.7+0.400.72220.84871.0¥òeq = 131.1718 / 11
P616.4o155.4o885.114916.493.5681.925.5925.6030.00.7+0.400.71270.84871.0¥òeq = 132.9899 / 11
P716.4o171.8o99.715701.898.4686.825.7725.7830.00.7+0.400.70780.84871.0¥òeq = 131.31910 / 11
P88.2o180.0o015801.599.0687.425.7925.8030.00.7+0.400.70720.84870.70720.84871.0¥òeq = 131.43811 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.7072MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.8487MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=919.4 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19500.000919.4919.412.0114.4417.3330.00.80620.8487¥òeq = 286.8451 / 11
P18.2o8.2o19400.399.71.0920.412.0314.4517.3430.00.80620.8487¥òeq = 273.642 / 11
P216.4o24.6o18615.1884.98.7928.112.1514.5717.4630.00.80620.8487¥òeq = 277.2383 / 11
P316.4o41.0o17108.42391.623.5942.912.3814.8117.6930.00.80620.8487¥òeq = 284.2464 / 11
P445.0o86.0o10430.19069.988.91008.313.4115.8318.7230.00.77260.8487¥òeq = 290.2085 / 11
P54.0o90.0o9750.09750.095.61015.013.5115.9418.8330.00.76830.8487¥òeq = 290.8266 / 11
49.0o139.0o2391.617108.4167.81087.214.6517.0719.9630.00.72220.8487¥òeq = 283.6788 / 11
P616.4o155.4o884.918615.1182.61102.014.8817.3120.1930.00.71270.8487¥òeq = 289.1219 / 11
P716.4o171.8o99.719400.3190.31109.715.0017.4320.3130.00.70780.8487¥òeq = 291.99510 / 11
P88.2o180.0o019500.0191.21110.615.0117.4420.3330.00.70720.8487¥òeq = 292.36111 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7072at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.91949.3753
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8487at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.103311.2505


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=919.4 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19503.00019500.00028.5030.00.80620.8487109.63731 / 11
P18.2o8.2o19403.30019400.399.71.028.5030.00.80620.8487109.63732 / 11
P216.4o24.6o18617.90018615.1884.98.728.5030.00.80620.8487109.63733 / 11
P316.4o41.0o17111.10017108.42391.623.528.5030.00.80620.8487109.63734 / 11
P445.0o86.0o10431.75369.833.610430.19069.988.928.5030.00.77260.8487109.63735 / 11
P54.0o90.0o9751.56050.037.99750.09750.095.628.5030.00.76830.8487109.63736 / 11
49.0o139.0o2391.913409.684.02391.617108.4167.828.5030.00.72220.8487109.63738 / 11
P616.4o155.4o885.114916.493.5884.918615.1182.628.5030.00.71270.8487109.63739 / 11
P716.4o171.8o99.715701.898.499.719400.3190.328.5030.00.70780.8487109.637310 / 11
P88.2o180.0o015801.599.0019500.0191.228.5030.00.70720.8487109.637311 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7072at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.91949.3753
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8487at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.103311.2505
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL1
Maximum. Allowable External PressureMAEP =109.63731.1180CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=109.6373 kPa)
¡Ü Shell MaterialMATL =SA537-CL1
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =345.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 310.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 28.5 mm
Outside Radius of tank top headRo = 9780.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003643
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =37.62290 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =109.6373 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=919.4 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o22.2922.314.4417.3328.9030.00.7+0.40#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o22.2922.314.4517.3428.9030.00.7+0.402 / 11
P216.4o24.6o22.2922.314.5717.4628.9030.00.7+0.403 / 11
P316.4o41.0o22.2922.314.8117.6928.9030.00.7+0.40#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o23.5523.515.8318.7228.9030.00.7+0.40#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o23.8723.615.9418.8328.9030.00.7+0.40#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o25.2625.317.0719.9628.9030.00.7+0.408 / 11
P616.4o155.4o25.5925.617.3120.1928.9030.00.7+0.40#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o25.7725.817.4320.3128.9030.00.7+0.40#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o25.7925.817.4420.3328.9030.00.7+0.4011 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. 10-TK-7320Rev. No.[AAA4] 
Design Code : Div. 2, Di = 19100 mm, CA = 1.5 mm, SG = 0.526, Pg= 20 kg/cm©÷(=1961.33 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2492.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o48.1048.236.3937.5426.4049.00.7+0.09#124.649.02733.58200.638,19124,5741 / 11
P18.2o8.2o48.1048.236.4037.5526.4049.00.7+0.092 / 11
P216.4o24.6o48.1048.236.5137.6626.4049.00.7+0.093 / 11
P316.4o41.0o48.1048.236.7237.8826.4049.00.7+0.09#216.449.02733.59060.647,37329,4934 / 11
P445.0o86.0o48.2348.437.6638.8126.4049.50.7+0.45#345.049.52720.87550.0226,933152,5195 / 11
P54.0o90.0o48.1448.437.7638.9126.40TD90USED0.7+0.37#453.050.52727.58934.0228,513187,2936 / 11
49.0o139.0o49.2049.338.7939.9426.4050.50.7+0.488 / 11
P616.4o155.4o49.3849.539.0040.1526.4050.50.7+0.30#516.450.52733.58860.647,59930,3969 / 11
P716.4o171.8o49.4749.639.1140.2626.4050.50.7+0.21#624.650.52733.58200.638,44225,32610 / 11
P88.2o180.0o49.4949.639.1340.2826.4050.50.7+0.1911 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 28.9 mm; Pe :101.32 kPa ¡Â Pa = 101.35 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003502; Factor_B = 36.173 MPa


S-Tank Engineering
Spherical Tank Calculation [8 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19500 (cm), Sd=138 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=345.982, N¥õ=23.717
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9751.5mm975.15cm
4¡¡L = Design Liquid levelL = 15800mm1580.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 24,516,633N2500000.8Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6390.639
10¡¡¥ã = Liquid Density¥ã = 6.266449E-6N/mm©ø639.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.89916degree0.41712radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 51.65338degree0.90152radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99664130.9966413
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08147641.0814764
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40512820.4051282
20¡¡C5 = 22 / ¥õC5 = 0.92053440.9205344
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40512820.4051282
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.891N-mm29.255Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 345.982N-mm3.528Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 23.717N-mm0.242Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3383.28N/mm3449.985Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2591.24N/mm2642.329Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 25.8mm2.58cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 23.87mm2.387cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 121.034MPa1234.203Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,021,093,910N-mm10412.26¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 389,332,257N-mm3970.084¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 512,638,077N-mm5227.454¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 184,573,009N-mm1882.121¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 224.711N/mm229.141Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 596,610,686N-mm6083.736¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 311,304,913N-mm3174.427¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 71,685,280mm©ø71.685¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,321,838,328mm©ø5321.838¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7429E-51.7429E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 5.995425E-35.995425E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2004.451mm200.445cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 56.302N/mm57.412Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 50,975,852N-mm519.809¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 25,592,321N-mm260.969¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 905,393mm©ø9053.928cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 253,803,952mm©ø253.804¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 280.325mm28.033cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 555.77mm55.577cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 301.37N/mm307.312Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 209.362N/mm213.49Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,701,268N173481.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 47056.657N4798.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7901.215mm790.122cm

piDeg=[23.89916138216077] piRad=[0.41711905458418425] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Sd=138 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019503.0000.58842868.892868.892868.89130.40 < OK 13822.2922.3023.50.015.500000
P18.219403.3000.58842868.892868.892868.89130.40 < OK 13822.2922.3023.50.015.500000
P224.618617.9000.58842868.892868.892868.89130.40 < OK 13822.2922.3023.50.015.500000
P34117111.1000.58842868.892868.892868.89130.40 < OK 13822.2922.3023.50.015.500000
P48610431.75369.80.03360.6222868.89305.1323.003174.032891.89132.30 < OK 13823.5523.4924.5-0.064.133.0720.2320.5120.039
P5909751.56050.00.03790.62632868.89345.9823.72224.7156.30301.37209.363383.282591.24131.34 < OK 13823.8723.6425.0-0.234.833.4840.2390.5810.04Column Attached Equator Plate
1392391.913409.60.08400.67242868.89371.47447.953240.363316.85131.17 < OK 13825.2625.2726.50.014.953.744.510.6230.752
P6155.4885.114916.40.09350.68192868.89442.02469.493310.913338.38132.99 < OK 13825.5925.6026.50.013.634.4514.7270.7420.788
P7171.899.715701.80.09840.68682868.89478.22481.273347.113350.16131.32 < OK 13825.7725.7827.00.014.844.8154.8460.8030.808
P8180015801.50.09900.68742868.89482.79482.793351.683351.68131.44 < OK 13825.7925.8027.00.014.764.8614.8610.810.81


S-Tank Engineering
Spherical Tank Calculation [8 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19500 (cm), Syt=310.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=776.871, N¥õ=155.374
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9750mm975.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19500mm1950.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 39,544,929N4032460.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 310.5MPaS = 310.5MPa3166.219Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.96345degree0.41824radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99652280.9965228
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08421441.0842144
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40615380.4061538
20¡¡C5 = 22 / ¥õC5 = 0.91806470.9180647
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40615380.4061538
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.45N-mm29.25Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 776.871N-mm7.922Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 155.374N-mm1.584Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3915.95N/mm3993.158Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2538.95N/mm2589.008Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 12.24mm1.224cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 11.24mm1.124cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 268.455MPa2737.479Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,646,754,443N-mm16792.222¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 625,928,521N-mm6382.695¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 826,749,648N-mm8430.5¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 296,820,777N-mm3026.73¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 360.722N/mm367.834Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 962,387,645N-mm9813.623¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 502,057,519N-mm5119.562¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 42,687,141mm©ø42.687¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,360,909,205mm©ø5360.909¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7664E-51.7664E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.043657E-36.043657E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2009.377mm200.938cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 90.097N/mm91.873Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 82,200,445N-mm838.211¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 41,268,563N-mm420.822¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 912,359mm©ø9123.59cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 257,083,028mm©ø257.083¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 281.778mm28.178cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 558.626mm55.863cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 484.875N/mm494.435Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 337.141N/mm343.788Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,746,471N280062.1Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 76316.3N7782.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7920.0mm792.0cm

piDeg=[23.96345330703667] piRad=[0.4182411603557135] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Syt=310.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019500.0000.58842868.452868.452868.45286.84 < OK 310.59.249.2410.07.620000
P18.219400.399.70.00100.58942868.457.152.382875.602870.83273.64 < OK 310.59.259.2610.50.0111.870.0460.0150.0080.003
P224.618615.1884.90.00870.59712868.4563.8020.822932.252889.27277.24 < OK 310.59.389.3810.510.710.4110.1340.0680.022
P34117108.42391.60.02350.61192868.45174.1754.503042.622922.95284.25 < OK 310.59.619.6110.58.461.1210.3510.1870.058
P48610430.19069.90.08890.67732868.45713.25153.963581.703022.41290.21 < OK 310.510.7510.6411.5-0.116.544.5910.9910.7650.165
P5909750.09750.00.09560.6842868.45776.87155.37360.7290.10484.87337.143915.952538.95290.83 < OK 310.511.2410.7412.0-0.506.34510.8330.167Column Attached Equator Plate
1392391.617108.40.16780.75622868.45758.08877.743626.533746.19283.68 < OK 310.511.8811.8813.08.644.8795.6490.8130.942
P6155.4884.918615.10.18260.7712868.45868.45911.433736.903779.88289.12 < OK 310.512.1012.1113.00.016.895.5895.8660.9320.978
P7171.899.719400.30.19030.77872868.45925.09929.873793.543798.32292.00 < OK 310.512.2312.2313.05.965.9545.9850.9920.997
P8180019500.00.19120.77962868.45932.24932.243800.693800.69292.36 < OK 310.512.2412.2413.05.846611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 281326.17
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19500
MRA(sWt[tid][20][10])= 1194.591
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12750mm
5. gCol[tid][5] =Upper Column HeightUCHT =3960mm
6. gCol[tid][6] =Lower Column HeightLCHT =8790mm
7. gCol[tid][7] =Column P.C.DPCD =19060mm
8. gCol[tid][8] =Brace AngleBRang =31.4208deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1946deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL1t30 ~ 30SHT58281.326343.218000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt30, t12¡¿3173¡¿3960SHT1115.52117.073000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8790LPCS1122.22522.225000,000000,0003
4BRACE ( PIPE, ¥è= 31.4208 deg.)null¨ª0¡¿0t ¡¿ 10300LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102319.072382.516000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1044.9 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19903.000588.4588.422.7222.7230.50.7+0.340.80380.84551.0¥òeq = 133.0791 / 11
P18.2o8.2o19801.300588.422.7222.7230.50.7+0.340.80380.84551.0¥òeq = 133.0792 / 11
P216.4o24.6o18999.800588.422.7222.7230.50.7+0.340.80380.84551.0¥òeq = 133.0793 / 11
P316.4o41.0o17462.000588.422.7222.7230.50.7+0.340.80380.84551.0¥òeq = 133.0794 / 11
P445.0o86.0o10645.75255.832.9621.323.9723.9130.50.7+0.340.77090.84551.0¥òeq = 131.9765 / 11
P54.0o90.0o9951.55950.037.3625.724.2524.0730.50.7+0.340.76650.84551.0¥òeq = 130.7976 / 11
49.0o139.0o2441.013460.584.3672.725.7625.7730.50.7+0.340.71950.84551.0¥òeq = 131.38 / 11
P616.4o155.4o903.214998.394.0682.426.1026.1230.50.7+0.340.70980.84551.0¥òeq = 133.1569 / 11
P716.4o171.8o101.715799.899.0687.426.2926.3030.50.7+0.340.70480.84551.0¥òeq = 131.55310 / 11
P88.2o180.0o015901.599.6688.026.3126.3230.50.7+0.340.70420.84550.70420.84551.0¥òeq = 131.67511 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.7042MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.8455MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=915.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19900.000915.5915.512.2614.6717.6230.50.80380.8455¥òeq = 278.791 / 11
P18.2o8.2o19798.3101.71.0916.512.2714.6917.6330.50.80380.8455¥òeq = 279.2632 / 11
P216.4o24.6o18996.9903.18.9924.412.4014.8117.7630.50.80380.8455¥òeq = 283.013 / 11
P316.4o41.0o17459.42440.623.9939.412.6415.0518.0030.50.80380.8455¥òeq = 277.1164 / 11
P445.0o86.0o10644.19255.990.81006.313.7116.1319.0730.50.77090.8455¥òeq = 284.6935 / 11
P54.0o90.0o9950.09950.097.61013.113.8216.2419.1830.50.76650.8455¥òeq = 284.8876 / 11
49.0o139.0o2440.617459.4171.21086.715.0017.4220.3630.50.71950.8455¥òeq = 290.8198 / 11
P616.4o155.4o903.118996.9186.31101.815.2417.6620.6030.50.70980.8455¥òeq = 285.5049 / 11
P716.4o171.8o101.719798.3194.21109.715.3717.7820.7330.50.70480.8455¥òeq = 288.38610 / 11
P88.2o180.0o019900.0195.21110.715.3917.8020.7430.50.70420.8455¥òeq = 288.75311 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7042at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.91559.3355
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8455at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.099211.2087


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=915.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19903.00019900.00029.0030.50.80380.8455109.00231 / 11
P18.2o8.2o19801.30019798.3101.71.029.0030.50.80380.8455109.00232 / 11
P216.4o24.6o18999.80018996.9903.18.929.0030.50.80380.8455109.00233 / 11
P316.4o41.0o17462.00017459.42440.623.929.0030.50.80380.8455109.00234 / 11
P445.0o86.0o10645.75255.832.910644.19255.990.829.0030.50.77090.8455109.00235 / 11
P54.0o90.0o9951.55950.037.39950.09950.097.629.0030.50.76650.8455109.00236 / 11
49.0o139.0o2441.013460.584.32440.617459.4171.229.0030.50.71950.8455109.00238 / 11
P616.4o155.4o903.214998.394.0903.118996.9186.329.0030.50.70980.8455109.00239 / 11
P716.4o171.8o101.715799.899.0101.719798.3194.229.0030.50.70480.8455109.002310 / 11
P88.2o180.0o015901.599.6019900.0195.229.0030.50.70420.8455109.002311 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7042at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.91559.3355
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8455at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.099211.2087
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL1
Maximum. Allowable External PressureMAEP =109.00231.1115CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=109.0023 kPa)
¡Ü Shell MaterialMATL =SA537-CL1
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =345.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 310.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 29.0 mm
Outside Radius of tank top headRo = 9980.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003632
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =37.51371 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =109.0023 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=915.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o22.7222.714.6717.6229.4630.50.7+0.34#124.630.52848.08544.135,53516,6051 / 11
P18.2o8.2o22.7222.714.6917.6329.4630.50.7+0.342 / 11
P216.4o24.6o22.7222.714.8117.7629.4630.50.7+0.343 / 11
P316.4o41.0o22.7222.715.0518.0029.4630.50.7+0.34#216.430.52848.09431.744,98219,9284 / 11
P445.0o86.0o23.9723.916.1319.0729.4630.50.7+0.34#345.030.52834.87860.0224,637102,0135 / 11
P54.0o90.0o24.2524.116.2419.1829.4630.50.7+0.34#453.030.52841.79304.0225,581122,7926 / 11
49.0o139.0o25.7625.817.4220.3629.4630.50.7+0.348 / 11
P616.4o155.4o26.1026.117.6620.6029.4630.50.7+0.34#516.430.52848.09231.744,98219,9289 / 11
P716.4o171.8o26.2926.317.7820.7329.4630.50.7+0.34#624.630.52848.08544.135,53516,60510 / 11
P88.2o180.0o26.3126.317.8020.7429.4630.50.7+0.3411 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. 10-TK-7400ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19500 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=919.4 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o22.2922.314.4417.3328.9030.00.7+0.40#124.630.02790.88372.335,22715,6821 / 11
P18.2o8.2o22.2922.314.4517.3428.9030.00.7+0.402 / 11
P216.4o24.6o22.2922.314.5717.4628.9030.00.7+0.403 / 11
P316.4o41.0o22.2922.314.8117.6928.9030.00.7+0.40#216.430.02790.89246.144,70518,8214 / 11
P445.0o86.0o23.5523.515.8318.7228.9030.00.7+0.40#345.030.02777.87700.0224,37996,3485 / 11
P54.0o90.0o23.8723.615.9418.8328.90TD90USED0.7+0.40#453.030.02784.69119.0225,271115,9726 / 11
49.0o139.0o25.2625.317.0719.9628.9030.00.7+0.408 / 11
P616.4o155.4o25.5925.617.3120.1928.9030.00.7+0.40#516.430.02790.89046.144,70518,8219 / 11
P716.4o171.8o25.7725.817.4320.3128.9030.00.7+0.40#624.630.02790.88372.335,22715,68210 / 11
P88.2o180.0o25.7925.817.4420.3328.9030.00.7+0.4011 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 29.46 mm; Pe :101.32 kPa ¡Â Pa = 101.34 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003502; Factor_B = 36.17 MPa


S-Tank Engineering
Spherical Tank Calculation [9 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19900 (cm), Sd=138 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 41600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=348.938, N¥õ=22.107
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19900mm1990.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9951.5mm995.15cm
4¡¡L = Design Liquid levelL = 15900mm1590.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 25,776,726N2628494.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6390.639
10¡¡¥ã = Liquid Density¥ã = 6.266449E-6N/mm©ø639.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1016.0mm101.6cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.71409degree0.43134radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 53.28037degree0.92992radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99511610.9951161
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11607871.1160787
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41809050.4180905
20¡¡C5 = 22 / ¥õC5 = 0.89018050.8901805
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41809050.4180905
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2927.731N-mm29.855Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 348.938N-mm3.558Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 22.107N-mm0.225Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3437.4N/mm3505.173Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2649.59N/mm2701.83Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 26.32mm2.632cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 24.25mm2.425cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 120.735MPa1231.154Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,095,594,218N-mm11171.952¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 401,608,988N-mm4095.272¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 550,040,802N-mm5608.855¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 191,041,612N-mm1948.082¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 217.705N/mm221.997Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 642,016,174N-mm6546.743¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 334,136,966N-mm3407.249¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 81,098,146mm©ø81.098¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 6,231,816,825mm©ø6231.817¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0601E-52.0601E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.62588E-36.62588E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2113.18mm211.318cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 56.973N/mm58.096Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 59,338,917N-mm605.089¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 29,790,980N-mm303.783¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,041,524mm©ø10415.239cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 318,426,657mm©ø318.427¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 305.731mm30.573cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 605.772mm60.577cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 300.253N/mm306.173Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 204.731N/mm208.768Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,761,166N179589.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 57545.871N5868.0Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 8321.254mm832.125cm

piDeg=[24.71408833429126] piRad=[0.4313422130621035] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19900 (cm), Sd=138 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 41600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019903.0000.58842927.732927.732927.73133.08 < OK 13822.7222.7223.53.570000
P18.219801.3000.58842927.732927.732927.73133.08 < OK 13822.7222.7223.53.570000
P224.618999.8000.58842927.732927.732927.73133.08 < OK 13822.7222.7223.53.570000
P34117462.0000.58842927.732927.732927.73133.08 < OK 13822.7222.7223.53.570000
P48610645.75255.80.03290.62132927.73306.3821.383234.112949.11131.98 < OK 13823.9723.9125.0-0.064.372.9620.2070.4940.034
P5909951.55950.00.03730.62572927.73348.9422.11217.7056.97300.25204.733437.402649.59130.80 < OK 13824.2524.0725.5-0.185.223.3740.2140.5620.036Column Attached Equator Plate
1392441.013460.50.08430.67272927.73379.87459.533307.603387.26131.30 < OK 13825.7625.7727.00.014.863.6734.4430.6120.74
P6155.4903.214998.30.09400.68242927.73453.35481.953381.083409.69133.16 < OK 13826.1026.1227.00.023.514.3834.660.7310.777
P7171.8101.715799.80.09900.68742927.73491.05494.233418.783421.96131.55 < OK 13826.2926.3027.50.014.674.7484.7780.7910.796
P8180015901.50.09960.6882927.73495.81495.813423.543423.54131.68 < OK 13826.3126.3227.50.014.584.7944.7940.7990.799


S-Tank Engineering
Spherical Tank Calculation [9 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19900 (cm), Syt=310.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 41700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=809.069, N¥õ=161.814
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19900mm1990.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9950mm995.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19900mm1990.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 42,045,168N4287414.0Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 310.5MPaS = 310.5MPa3166.219Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1016.0mm101.6cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.77749degree0.43245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99499530.9949953
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11876161.1187616
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41909550.4190955
20¡¡C5 = 22 / ¥õC5 = 0.88790250.8879025
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41909550.4190955
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2927.29N-mm29.85Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 809.069N-mm8.25Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 161.814N-mm1.65Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3997.63N/mm4076.448Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2600.53N/mm2651.803Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 12.56mm1.256cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 11.47mm1.147cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 263.785MPa2689.858Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,786,786,274N-mm18220.149¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 652,990,472N-mm6658.65¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 897,052,338N-mm9147.388¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 310,699,455N-mm3168.253¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 353.501N/mm360.471Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,047,303,269N-mm10679.521¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 544,964,235N-mm5557.089¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 48,883,918mm©ø48.884¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 6,275,251,496mm©ø6275.251¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0866E-52.0866E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.67669E-36.67669E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2118.113mm211.811cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 92.229N/mm94.047Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 96,762,075N-mm986.699¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 48,579,199N-mm495.37¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,049,151mm©ø10491.511cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 322,342,495mm©ø322.342¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 307.241mm30.724cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 608.734mm60.873cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 488.572N/mm498.205Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 333.436N/mm340.01Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,875,207N293189.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 94353.682N9621.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 8340.0mm834.0cm

piDeg=[24.77749436195018] piRad=[0.4324488570103622] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19900 (cm), Syt=310.5 MPa, MAWP=0.76492 (kg/cm©÷), HT_UPPCOL = 41700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019900.0000.58842927.292927.292927.29278.79 < OK 310.59.439.4310.510.210000
P18.219798.3101.70.00100.58942927.297.452.482934.742929.77279.26 < OK 310.59.449.4510.50.0110.060.0460.0150.0080.003
P224.618996.9903.10.00890.59732927.2966.4421.682993.732948.97283.01 < OK 310.59.579.5710.58.850.4110.1340.0680.022
P34117459.42440.60.02390.61232927.29181.3956.763108.682984.05277.12 < OK 310.59.829.8111.0-0.0110.751.1210.3510.1870.058
P48610644.19255.90.09080.67922927.29742.82160.343670.113087.63284.69 < OK 310.511.0010.8812.0-0.128.314.5910.9910.7650.165
P5909950.09950.00.09760.6862927.29809.07161.81353.5092.23488.57333.443997.632600.53284.89 < OK 310.511.4710.9912.5-0.488.25510.8330.167Column Attached Equator Plate
1392440.617459.40.17120.75962927.29789.50914.123716.793841.41290.82 < OK 310.512.1812.1713.0-0.016.344.8795.6490.8130.942
P6155.4903.118996.90.18630.77472927.29904.44949.203831.733876.49285.50 < OK 310.512.4112.4213.50.018.055.5895.8660.9320.978
P7171.8101.719798.30.19420.78262927.29963.43968.413890.723895.70288.39 < OK 310.512.5412.5413.57.125.9545.9850.9920.997
P8180019900.00.19520.78362927.29970.88970.883898.173898.17288.75 < OK 310.512.5512.5613.50.017.006611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 297869.132
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19900
MRA(sWt[tid][20][10])= 1244.102
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =1016mm
3. gCol[tid][3] =Column thkthk =11.13mm
4. gCol[tid][4] =Tank HeightHtank =12950mm
5. gCol[tid][5] =Upper Column HeightUCHT =4170mm
6. gCol[tid][6] =Lower Column HeightLCHT =8780mm
7. gCol[tid][7] =Column P.C.DPCD =19410mm
8. gCol[tid][8] =Brace AngleBRang =31.9158deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.741deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL1t30.5 ~ 30.5SHT58297.869363.400000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt30.5, t13¡¿3492¡¿4170SHT1119.22821.150000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1016¡¿11.13t ¡¿ 8780LPCS1126.63726.637000,000000,0003
4BRACE ( PIPE, ¥è= 31.9158 deg.)null¨ª0¡¿0t ¡¿ 10344LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102343.734411.188000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1363.8 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o19503.000588.4588.415.7715.7828.00.7+0.381.09101.15281.0¥òeq = 185.091 / 11
P18.2o8.2o19403.300588.415.7715.7828.00.7+0.381.09101.15281.0¥òeq = 185.092 / 11
P216.4o24.6o18617.900588.415.7715.7828.00.7+0.381.09101.15281.0¥òeq = 185.093 / 11
P316.4o41.0o17111.100588.415.7715.7828.00.7+0.381.09101.15281.0¥òeq = 185.094 / 11
P445.0o86.0o10431.75219.830.8619.216.5616.5328.00.7+0.381.06021.15281.0¥òeq = 189.2045 / 11
P54.0o90.0o9751.55900.034.8623.216.7316.6328.00.7+0.381.05621.15281.0¥òeq = 191.3166 / 11
49.0o139.0o2391.913259.678.1666.517.6717.6828.00.7+0.381.01291.15281.0¥òeq = 191.2078 / 11
P616.4o155.4o885.114766.487.0675.417.8817.9028.00.7+0.381.00401.15281.0¥òeq = 188.1899 / 11
P716.4o171.8o99.715551.891.7680.118.0018.0128.00.7+0.380.99931.15281.0¥òeq = 189.47410 / 11
P88.2o180.0o015651.592.2680.618.0118.0228.00.7+0.380.99881.15280.99881.15281.0¥òeq = 189.63811 / 11
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.9988MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.1528MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1248.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o19500.0001248.51248.510.9518.5921.4628.01.09101.1528¥òeq = 286.8451 / 11
P18.2o8.2o19400.399.71.01249.510.9618.6021.4728.01.09101.1528¥òeq = 287.3222 / 11
P216.4o24.6o18615.1884.98.71257.211.0818.7221.5928.01.09101.1528¥òeq = 291.13 / 11
P316.4o41.0o17108.42391.623.51272.011.3018.9421.8128.01.09101.1528¥òeq = 298.4584 / 11
P445.0o86.0o10430.19069.988.91337.412.2719.9122.7828.01.06021.1528¥òeq = 303.3995 / 11
P54.0o90.0o9750.09750.095.61344.112.3720.0122.8828.01.05621.1528¥òeq = 303.4266 / 11
49.0o139.0o2391.617108.4167.81416.313.4521.0923.9628.01.01291.1528¥òeq = 295.0258 / 11
P616.4o155.4o884.918615.1182.61431.113.6721.3124.1828.01.00401.1528¥òeq = 300.6869 / 11
P716.4o171.8o99.719400.3190.31438.813.7821.4224.2928.00.99931.1528¥òeq = 303.67510 / 11
P88.2o180.0o019500.0191.21439.713.7921.4424.3128.00.99881.1528¥òeq = 304.05511 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =0.73557.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.9988at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.248512.7312
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.1528at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.441014.6941


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1248.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o19503.00019500.00026.5028.01.09101.1528110.10171 / 11
P18.2o8.2o19403.30019400.399.71.026.5028.01.09101.1528110.10172 / 11
P216.4o24.6o18617.90018615.1884.98.726.5028.01.09101.1528110.10173 / 11
P316.4o41.0o17111.10017108.42391.623.526.5028.01.09101.1528110.10174 / 11
P445.0o86.0o10431.75219.830.810430.19069.988.926.5028.01.06021.1528110.10175 / 11
P54.0o90.0o9751.55900.034.89750.09750.095.626.5028.01.05621.1528110.10176 / 11
49.0o139.0o2391.913259.678.12391.617108.4167.826.5028.01.01291.1528110.10178 / 11
P616.4o155.4o885.114766.487.0884.918615.1182.626.5028.01.00401.1528110.10179 / 11
P716.4o171.8o99.715551.891.799.719400.3190.326.5028.00.99931.1528110.101710 / 11
P88.2o180.0o015651.592.2019500.0191.226.5028.00.99881.1528110.101711 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =0.73557.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.9988at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.248512.7312
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.1528at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.441014.6941
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL1
Maximum. Allowable External PressureMAEP =110.10171.1227CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=110.1017 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. 10-TK-7440ABRev. No.[AAA4] 
Design Code : Div. 2, Di = 19500 mm, CA = 1.5 mm, SG = 0.601, Pg= 6 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1248.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 201 MPa, St = 327.75 MPa, Samb = 201 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o15.7715.818.5921.4626.9228.00.7+0.38#124.628.02790.88372.334,87914,6371 / 11
P18.2o8.2o15.7715.818.6021.4726.9228.00.7+0.382 / 11
P216.4o24.6o15.7715.818.7221.5926.9228.00.7+0.383 / 11
P316.4o41.0o15.7715.818.9421.8126.9228.00.7+0.38#216.428.02790.89246.144,39217,5664 / 11
P445.0o86.0o16.5616.519.9122.7826.9228.00.7+0.38#345.028.02777.87700.0224,08789,9245 / 11
P54.0o90.0o16.7316.620.0122.8826.9228.00.7+0.38#453.028.02784.69119.0224,920108,2416 / 11
49.0o139.0o17.6717.721.0923.9626.9228.00.7+0.388 / 11
P616.4o155.4o17.8817.921.3124.1826.9228.00.7+0.38#516.428.02790.89046.144,39217,5669 / 11
P716.4o171.8o18.0018.021.4224.2926.9228.00.7+0.38#624.628.02790.88372.334,87914,63710 / 11
P88.2o180.0o18.0118.021.4424.3126.9228.00.7+0.3811 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. 10-TK-7420ABCRev. No.[AAA4] 
Design Code : Div. 1, Di = 19900 mm, CA = 1.5 mm, SG = 0.639, Pg= 6 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=915.5 kPa
Material : SA537-CL1, EXTERNAL CHART NO. [CS-4], DTEMP = 65 ¡É, Sd = 138 MPa, St = 310.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 345 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o22.7222.714.6717.6229.4630.50.7+0.34#124.630.52848.08544.135,53516,6051 / 11
P18.2o8.2o22.7222.714.6917.6329.4630.50.7+0.342 / 11
P216.4o24.6o22.7222.714.8117.7629.4630.50.7+0.343 / 11
P316.4o41.0o22.7222.715.0518.0029.4630.50.7+0.34#216.430.52848.09431.744,98219,9284 / 11
P445.0o86.0o23.9723.916.1319.0729.4630.50.7+0.34#345.030.52834.87860.0224,637102,0135 / 11
P54.0o90.0o24.2524.116.2419.1829.46TD90USED0.7+0.34#453.030.52841.79304.0225,581122,7926 / 11
49.0o139.0o25.7625.817.4220.3629.4630.50.7+0.348 / 11
P616.4o155.4o26.1026.117.6620.6029.4630.50.7+0.34#516.430.52848.09231.744,98219,9289 / 11
P716.4o171.8o26.2926.317.7820.7329.4630.50.7+0.34#624.630.52848.08544.135,53516,60510 / 11
P88.2o180.0o26.3126.317.8020.7429.4630.50.7+0.3411 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.92 mm; Pe :101.32 kPa ¡Â Pa = 101.33 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.974; Fic=38.974 MPa; Fha=19.487 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [10 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=19500 (cm), Sd=201 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=318.404, N¥õ=20.688
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9751.5mm975.15cm
4¡¡L = Design Liquid levelL = 15650mm1565.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 22,305,777N2274556.3Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 201MPaS = 201.0MPa2049.63Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6010.601
10¡¡¥ã = Liquid Density¥ã = 5.893797E-6N/mm©ø601.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.96345degree0.41824radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.76863degree0.92099radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99652280.9965228
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08421441.0842144
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40615380.4061538
20¡¡C5 = 22 / ¥õC5 = 0.91806470.9180647
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40615380.4061538
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.891N-mm29.255Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 318.404N-mm3.247Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 20.688N-mm0.211Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3339.93N/mm3405.781Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2616.12N/mm2667.7Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 18.02mm1.802cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 16.73mm1.673cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 174.917MPa1783.657Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 929,013,914N-mm9473.306¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 353,116,585N-mm3600.787¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 466,409,506N-mm4756.053¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 167,450,972N-mm1707.525¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 203.438N/mm207.449Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 542,929,468N-mm5536.34¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 283,234,955N-mm2888.193¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 50,706,578mm©ø50.707¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,363,383,851mm©ø5363.384¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7664E-51.7664E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.043657E-36.043657E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2009.686mm200.969cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 50.804N/mm51.806Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 46,366,118N-mm472.803¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 23,278,013N-mm237.37¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 912,640mm©ø9126.397cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 257,201,700mm©ø257.202¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 281.822mm28.182cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 558.712mm55.871cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 273.457N/mm278.849Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 190.149N/mm193.898Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,549,253N157979.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 43040.476N4388.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7921.218mm792.122cm

piDeg=[23.96345330703667] piRad=[0.4182411603557135] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Sd=201 MPa, Pg=0.5884 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019503.0000.58842868.892868.892868.89185.09 < OK 20115.7715.7817.00.017.920000
P18.219403.3000.58842868.892868.892868.89185.09 < OK 20115.7715.7817.00.017.920000
P224.618617.9000.58842868.892868.892868.89185.09 < OK 20115.7715.7817.00.017.920000
P34117111.1000.58842868.892868.892868.89185.09 < OK 20115.7715.7817.00.017.920000
P48610431.75219.80.03080.61922868.89279.9720.023148.862888.92189.20 < OK 20116.5616.5317.5-0.035.872.9970.2140.50.036
P5909751.55900.00.03480.62322868.89318.4020.69203.4450.80273.46190.153339.932616.12191.32 < OK 20116.7316.6317.5-0.104.823.4090.2210.5680.037Column Attached Equator Plate
1392391.913259.60.07810.66652868.89345.07417.013213.963285.90191.21 < OK 20117.6717.6818.50.014.873.6944.4640.6160.744
P6155.4885.114766.40.08700.67542868.89411.42437.263280.313306.15188.19 < OK 20117.8817.9019.00.026.374.4054.6810.7340.78
P7171.899.715551.80.09170.68012868.89445.47448.343314.363317.23189.47 < OK 20118.0018.0119.00.015.734.7694.80.7950.8
P8180015651.50.09220.68062868.89449.77449.773318.663318.66189.64 < OK 20118.0118.0219.00.015.654.8154.8150.8030.803


S-Tank Engineering
Spherical Tank Calculation [10 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=19500 (cm), Syt=327.75 MPa, MAWP=0.7355 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=776.871, N¥õ=155.374
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 19500mm1950.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9750mm975.0cm
4¡¡L = Hydrostatic-test Water LevelL = 19500mm1950.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 39,452,962N4023082.5Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL1, Sd = 327.75MPaS = 327.75MPa3342.12Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 914.4mm91.44cm
12¡¡N = Number of Support ColumnN = 11.0columns11columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 23.96345degree0.41824radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99652280.9965228
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.08421441.0842144
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40615380.4061538
20¡¡C5 = 22 / ¥õC5 = 0.91806470.9180647
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40615380.4061538
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2868.45N-mm29.25Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 776.871N-mm7.922Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 155.374N-mm1.584Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3915.32N/mm3992.515Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2540.08N/mm2590.161Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 11.6mm1.16cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 10.65mm1.065cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 279.152MPa2846.558Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,642,924,706N-mm16753.17¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 624,472,844N-mm6367.851¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 824,826,936N-mm8410.894¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 296,130,483N-mm3019.691¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 359.883N/mm366.979Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 960,149,490N-mm9790.8¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 500,889,920N-mm5107.656¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 40,019,195mm©ø40.019¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 5,360,909,205mm©ø5360.909¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.7664E-51.7664E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.043657E-36.043657E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2009.377mm200.938cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 89.887N/mm91.659Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 82,009,278N-mm836.262¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 41,172,588N-mm419.844¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 912,359mm©ø9123.59cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 257,083,028mm©ø257.083¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 281.778mm28.178cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 558.626mm55.863cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 483.747N/mm493.285Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 336.357N/mm342.989Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,740,084N279410.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 76138.817N7764.0Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7920.0mm792.0cm

piDeg=[23.96345330703667] piRad=[0.4182411603557135] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=19500 (cm), Syt=327.75 MPa, MAWP=0.7355 (kg/cm©÷), HT_UPPCOL = 39600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
019500.0000.58842868.452868.452868.45286.84 < OK 327.758.758.7610.00.0112.480000
P18.219400.399.70.00100.58942868.457.152.382875.602870.83287.32 < OK 327.758.778.7710.012.340.0460.0150.0080.003
P224.618615.1884.90.00870.59712868.4563.8020.822932.252889.27291.10 < OK 327.758.888.8910.00.0111.180.4110.1340.0680.022
P34117108.42391.60.02350.61192868.45174.1754.503042.622922.95298.46 < OK 327.759.119.1110.08.941.1210.3510.1870.058
P48610430.19069.90.08890.67732868.45713.25153.963581.703022.41303.40 < OK 327.7510.1810.0811.0-0.107.434.5910.9910.7650.165
P5909750.09750.00.09560.6842868.45776.87155.37359.8889.89483.75336.363915.322540.08303.43 < OK 327.7510.6510.1811.5-0.477.42510.8330.167Column Attached Equator Plate
1392391.617108.40.16780.75622868.45758.08877.743626.533746.19295.02 < OK 327.7511.2511.2512.59.984.8795.6490.8130.942
P6155.4884.918615.10.18260.7712868.45868.45911.433736.903779.88300.69 < OK 327.7511.4711.4712.58.265.5895.8660.9320.978
P7171.899.719400.30.19030.77872868.45925.09929.873793.543798.32303.68 < OK 327.7511.5811.5912.50.017.355.9545.9850.9920.997
P8180019500.00.19120.77962868.45932.24932.243800.693800.69304.06 < OK 327.7511.6011.6012.57.236611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 58
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 262571.106
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 19500
MRA(sWt[tid][20][10])= 1194.591
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =11Columns
2. gCol[tid][2] =Column ODOD =914.4mm
3. gCol[tid][3] =Column thkthk =10.31mm
4. gCol[tid][4] =Tank HeightHtank =12750mm
5. gCol[tid][5] =Upper Column HeightUCHT =3960mm
6. gCol[tid][6] =Lower Column HeightLCHT =8790mm
7. gCol[tid][7] =Column P.C.DPCD =19060mm
8. gCol[tid][8] =Brace AngleBRang =31.4208deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1946deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL1t28 ~ 28SHT58262.571320.337000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt28, t12¡¿3173¡¿3960SHT1115.37616.914000,000000,0002
3LOWER COLUMN (PIPE)null¨ª914.4¡¿10.31t ¡¿ 8790LPCS1122.22522.225000,000000,0003
4BRACE ( PIPE, ¥è= 31.4208 deg.)null¨ª0¡¿0t ¡¿ 10300LPCS22000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL102300.173359.476000,000000,00012
]CODE_CALC() 111 Tank Qty = iMax = [12]
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [44.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [53.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [44.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [50.5]mm
]
sph.uAry.length = [2] uAry[0].length = [5]
sph.bAry.length = [38] bAry[0].length = [15]
sph.cAry.length = [36] cAry[0].length = [12]
sph.dAry.length = [36] dAry[0].length = [12]
tReq=[
tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1 tReq =  
PR
2SE £­ 0.2P
  £« CA

Div.1 tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1¡¡ tReq =  
P¡¤Rc
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA


½ÃÀ۽ð£ = [2024-12-05 09:08:42.0382]
Á¾·á½Ã°£ = [2024-12-05 09:08:42.0577]

HTML END!!!