HTML Ư¼ö¹®ÀÚ ¸®½ºÆ® (¡î ¡î ¡î ¥ð ©ª £í©÷£í©ø £í©ù, ©ö ©÷ ©ø ©ù, ©û©ü©ý©þ, ¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ¡É ¢º ¤º ¡îax2 + bx + c

½ÃÀ۽ð£ = [2024-12-05 09:21:34.0776]
req=[org.apache.catalina.connector.RequestFacade@29943fe7]
res=[org.apache.catalina.connector.ResponseFacade@43ef6c04]
conn=[com.mysql.jdbc.JDBC4Connection@3da1b0e]
cdAry[0] = []
cdAry[1] = [TABLE 1.1) String uAry[][]
query[0] = Select sid, SYMBOL, UNIT, DESCR, kid From S_DATA Where kid=6 and sid=0
sidSYMBOLUNITDESCRkid
0PUnitbar 1 | bar | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = bar | 6

]
cdAry[2] = [TABLE 2.1) String bAry[][] = S_RESULT
query[1] = Select sid, DESCR, UNIT, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,REMARK From S_RESULT Where kid=6 and sid<100 Order By sid
sidDESCRUNITSYMBOLT1T2T3T4T5T6T7T8T9T10REMARK
0Nominal Capacity [°øĪ¿ë·®]m©øV_nom2006.9702006.9708379.160 
1Storage Capacity [ÀúÀå¿ë·®]m©øV_sto1950.4301950.4307541.290 
2Vapor Space Capacitym©øV_hil56.54056.540837.870 
3Storage Capacity Ratio%R_Sto97.18097.18090.000 
4Vapor Space Ratio%R_vapor2.8202.82010.000 
10A. WEIGHT SUMMARY   
11SHELL PLATETonWs166.145157.566541.785 
12UPPER COLUMN (PLATE)TonWuc6.6536.64832.426 
13LOWER COLUMN (PIPE)TonWc13.09613.09956.831 
14CROSS BRACE (PIPE)TonWb11.39711.39721.319 
15ROOF PLATFORM & STAIRWAYTonWr11.78611.78951.148 
16WATER SPRAY AND ATTACHMENTTonWsp10.47710.47945.465 
17MANHOLE & NOZZLETonWn12.20012.20019.500 
18INTERNAL LADDER & ATTACHMENTTonWi9.6269.62615.386 
19ANCHOR BOLT/NUTTonWa3.1803.1804.452 
20COLUMN FIRE PROOFINGTonWin30.20030.20070.500 
21BLANK 1TonW_1 
22BLANK 2TonW_2 
23BLANK 3TonW_3 
24BLANK 4TonW_4 
25BLANK 5TonW_5 
26Lower-Column O.DmmDcol609.600609.6001066.800 
27Lower-Column ThicknessmmTcol12.70012.70016.000 
28Cross-Brace O.DmmDbrace219.100219.100219.100 
29Cross-Brace ThicknessmmTbrace12.70012.70012.700 
30¡á EMPTY WEIGHT (1 Unit)TonWe274.760266.180858.810We = W(1)+ .. +W(10)
31B. LOADING DATA   
32¡¡CONTENTS WEIGHT (at Operating)TonWc1212.1901212.1904449.360Wc = Vsto * S.G
33HYDROSTATIC TEST WATER WEIGHTTonWt2006.9702006.9708379.160Wt = Vnom * 1.0
34¡¡1) VERTICAL LOAD   
35EMPTY WEIGHTTonWe274.760266.180858.810We = W(1)+ .. +W(10)
36OPERATING WEIGHTTonWo1486.9501478.3705308.170Wo = We + Wc
37HYDROSTATIC TEST WEIGHTTonWh2281.7302273.1509237.970Wh = We + Wt
38¡¡2) HORIZONTAL LOAD   
39SEISMIC FACTOR (CS=0.25 Fix) CS0.2500.2500.250 
40SEISMIC LOAD (Base Shear) Vs = CS x WoTonVs371.740369.5901327.040Vs = CS x Wo
41WIND LOAD (Base Shear)TonVw 

]
cdAry[3] = [TABLE 3.1) String cAry[][] = S_DETAIL, cAry.length = [36] cAry[0].length = [12]
query[2] = Select sid, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 From S_DETAIL Where kid=6 and sid<100 Order By sid
sidSYMBOLT1T2T3T4T5T6T7T8T9T10
1TNOV-1110A/BV-1110A/BV-1110A/B       
2CODEDIV. 1DIV. 1DIV. 2       
3CONTENT1,3 Butane1,3 ButanePropylene       
4SG0.62150.62150.59       
5MATLSA516-70SA516-70SA537-CL2       
6DTEMP686868       
7Sd138.00138.00230.00       
8Di156501565025200       
9CA3.03.01.5       
10HT108251082515600       
11HHLL140801408020266       
12HLL125201252020266       
13LLL200020002000       
14LLLL100010001000       
15Pi6.06.08.335653       
16Pe1.013251.013251.01325       
17MDMT-19-19-19       
18E0.81.01.0       
19TQTY1.01.01.0       
20CQTY101014       
21SQTY8810       
22CACB3.0 / 3.03.0 / 3.03.0 / 3.0       
23L64.064.064.0       
24tdReq27.3322.4627.57       
25twReq15.6215.6220.62       
26tmReq15.6215.6221.29       
27teReq25.2525.2533.71       
28tTops26.026.034.5       
29tMids27.526.034.5       
30tBtms28.526.034.5       
31tUsed28.526.034.5       
32MSGOKOKOK       
33tdCyo51.8142.0253.7       
34ttCyt34.334.344.11       
35tCyli53.043.054.5       

]
cdAry[4] = [[cAry, dAry] TANK STRENGTH CALCULATION SHEET, uid= [1], units= [bar]
11TANK NO. (Max. 40 Char.)TNO =V-1110A/B
0
V-1110A/B
0
V-1110A/B
0
22VESSEL DESIGN CODE (ASME SEC. VIII, Div. 1,2)CODE =DIV. 1
1
DIV. 1
1
DIV. 2
2
33STORAGE LIQUID NAMECONTENT =1,3 Butane
0
1,3 Butane
0
Propylene
0
44DESIGN SPECIFIC GRAVITYSG =0.6215
0.6215
0.6215
0.6215
0.59
0.59
55MATERIAL OF SHELL PLATEMATL =SA516-70
0
SA516-70
0
SA537-CL2
0
66DESIGN TEMPERATURE (Max.)DTEMP =¡É68
68
68
68
68
68
77ALLOWABLE STRESS at Deisin(Operating)Sd =MPa138.00
138
138.00
138
230.00
230
88TANK INSIDE DIAMETERDi =mm15650
15650
15650
15650
25200
25200
99CORROSION ALLOWANCE (SHELL)CA =mm3.0
3
3.0
3
1.5
1.5
1010TANK EQUATOR LEVEL (FROM GROUND)HT =mm10825
10825
10825
10825
15600
15600
1111(SHELL µÎ²²°è»ê ³ôÀÌ) HIGH HIGH LIQUID LEVELHHLL =mm14080
14080
14080
14080
20266
20266
1212(Storage ¿ë·®°è»ê ¾×³ôÀÌ) HIGH LIQUID LEVELHLL =mm12520
12520
12520
12520
20266
20266
1313LOW LIQUID LEVELLLL =mm2000
2000
2000
2000
2000
2000
1414LOW LOW LIQUID LEVELLLLL =mm1000
1000
1000
1000
1000
1000
1515DESIGN INTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pi =
bar
kPa
6.0
600
6.0
600
8.335653
833.5653
1616DESIGN EXTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pe =
bar
kPa
1.01325
101.325
1.01325
101.325
1.01325
101.325
1717MIN.DESIGN METAL TEMPERATUREMDMT =¡É-19
-19
-19
-19
-19
-19
1818SHELL JOINT EFFICIENCYE =0.8
0.8
1.0
1
1.0
1
1919TANK QUANTITY (ÅÊÅ©¼ö·® Á÷Á¢ÀÔ·Â)TQTY =Unit1.0
1
1.0
1
1.0
1
2020COLUMN QUANTITY (¼ö·®ÀÚµ¿°è»ê)CQTY =EA10
10
10
10
14
14
2121SHELL SEGMENT QUANTITY (¼ö·®ÀÚµ¿°è»ê)SQTY =EA8
8
8
8
10
10
2222CORROSION ALLOWANCE (Column/Brace)CACB =mm3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
2323Cylinderical Vessel Longitudinal Length
ex) Mounded Bullet Vessel(Cylinderical) Length
L =(m)64.0
64
64.0
64
64.0
64
2424Req'd Thickness under Operating Cond. (Pi+Ps)tdReq =mm27.33
27.33
22.46
22.46
27.57
27.57
2525Req'd Thickness under Hydro-test (MAWP) (Pt)twReq =mm15.62
15.62
15.62
15.62
20.62
20.62
2626Req'd Thickness under Hydro-test (MAP) (Pt)tmReq =mm15.62
15.62
15.62
15.62
21.29
21.29
2727Req'd Thickness under External Pressue (Pe)teReq =mm25.25
25.25
25.25
25.25
33.71
33.71
2828¡¡¡¡¡¡¡Ü Top Shell Used ThicknesstTops =mm26.0
26
26.0
26
34.5
34.5
2929¡¡¡¡¡¡¡Ü Equator Used ThicknesstMids =mm27.5
27.5
26.0
26
34.5
34.5
3030¡¡¡¡¡¡¡Ü Bottom Shell Used ThicknesstBtms =mm28.5
28.5
26.0
26
34.5
34.5
3131¡¡¡¡¡¡¡Ü Max. (Spherical) Used ThicknesstUsed =mm28.5
28.5
26.0
26
34.5
34.5
3232If (tUsed ¡Â 64mm) then Accetable
Else (tUsed>64mm) Sd ReSelect
MSG =OK
0
OK
0
OK
0
3333(¡Ü Cylinder) Req'd Thickness under Oper. (Pi+Ps)tdCyo =mm51.81
51.81
42.02
42.02
53.7
53.7
3434(¡Ü Cylinder) Req'd Thickness under Hydrotest(Pt)ttCyt =mm34.3
34.3
34.3
34.3
44.11
44.11
3535¡¡¡¡¡¡¡Ü Max. (Cylinder) Used ThicknesstCyli =mm53.0
53
43.0
43
54.5
54.5

cAry[0].length=[12][12] END OF MYSQL_SPH_DATAREAD(), cAry.length = [36] dAry.length = [36]
]
cdAry[5] = []
rv=[sphereColumnSTD.jsp sph.WLEDING_LENGTH_CALC();

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 15,650 (m), Material SA516-70, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0101026.52731.48194.314,42316,38926.52731.48194.334423.2413269.71048.3563.789
#2, 0203026.52731.47256.128,846©ª782529,0245,883
#3, 3205026.52731.49415.8415,319©ª11988.637,66326.52731.48677.243829.6915318.81746.8473.639
#4, 4166626.57485.92185.2618,892©ª1429744,91513,11126.52495.38194.363148.6018891.61847.190.814
#5, 56413027.52731.48848.61887,165©ª15650157,33127.52731.48848.6184842.5187165.18212.52403.776
#6, 82015028.02731.49415.8416,186©ª11988.637,66328.02731.48477.244046.4616185.91746.8473.639
#7, 92017028.52731.47256.129,514©ª782529,0245,88328.52731.48194.334757.0614271.21048.3563.789
#8, 91018028.52731.48194.314,75716,389
Total Quantity and Shell Weight38165,102kg211.1 (m)182.2 (m)38165102.215650769.446
Total Site Weleding length (m)393.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 15,650 (m), Material SA516-70, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0101026.52731.48194.314,42316,38926.52731.48194.334423.2413269.71048.3563.789
#2, 0203026.52731.47256.128,846©ª782529,0245,883
#3, 3205026.52731.49415.8415,319©ª11988.637,66326.52731.48677.243829.6915318.81746.8473.639
#4, 4166626.57485.92185.2618,892©ª1429744,91513,11126.52495.38194.363148.6018891.61847.190.814
#5, 56413026.52731.48848.61883,996©ª15650157,33126.52731.48848.6184666.4283995.58212.52403.776
#6, 82015026.52731.49415.8415,319©ª11988.637,66326.52731.48477.243829.6915318.81746.8473.639
#7, 92017026.52731.47256.128,846©ª782529,0245,88326.52731.48194.334423.2413269.71048.3563.789
#8, 91018026.52731.48194.314,42316,389
Total Quantity and Shell Weight38160,064kg211.1 (m)182.2 (m)3816006415650769.446
Total Site Weleding length (m)393.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 25,200 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 06.46.435.52814.98444.616,29316,88935.52814.98444.636293.0418879.1700.8667.746
#2, 012.819.235.52814.98006.7212,586©ª8287.432,0275,085
#3, 312.83235.52814.910488.2423,361©ª1335441,95335.52814.99642.745840.2623361.01213.7383.829
#4, 49.541.535.58743.12089.2627,546©ª1669852,45812,53535.51873.58796.593060.6927546.21248.5798.847
#5, 545.58735.52823.61000628193,649©ª25165.579,060280,16735.52823.610050286916.03193648.88777.41694.891
#6, 651.5138.535.52827.411387.828222,746©ª25200317,11235.52827.411387.8287955.21222745.810096.27799.303
#7, 99.514835.58743.12089.2627,546©ª1669852,45812,53535.51873.58796.593060.6927546.21248.5798.847
#8, 1012.8160.835.52814.910488.2423,361©ª1335441,95335.52814.99442.745840.2623361.01213.7383.829
#9, 1112.8173.635.52814.98006.7212,586©ª8287.432,0275,08535.52814.98444.636293.0418879.1700.8667.746
#10, 116.418035.52814.98444.616,29316,889
Total Quantity and Shell Weight82555,967kg365.7 (m)632.5 (m)88555967.2252001995.038
Total Site Weleding length (m)998.2 (m)
myEQid[tid] = [ 5 ]
CalcRpt[tid][0].length() = [10] Bytes
1. CAPACITY CALCULATION
ÅÊÅ© °øĪ ¹× ÀúÀå¿ë·®ÇÏÁßÁ¶°Ç (Loading Data)
NoTNOLiquid
Name
SGDDLLVnomVstoVhilvRatioÅÊÅ©
Ç¥¸éÀû
4.Empty
Steel
5,ÀúÀå
¾×ü
6.¿îÀü
Áß·®
7.¼ö¾Ð
¼öÁß·®
8.¼ö¾Ð
Å×½ºÆ®Áß·®
mmmm£í©ø£í©ø£í©ø(%)m2Ton
1V-1110A/B1,3 Butane0.621515,65014,0802006.971950.4356.542.8 (%)769.45185.341212.191397.532006.972192.31
2V-1110A/B1,3 Butane0.621515,65014,0802006.971950.4356.542.8 (%)769.45180.231212.191392.422006.972187.21
3V-1110A/BPropylene0.5925,20020,2668379.167541.29837.8610 (%)1995.04652.54449.365101.868379.169031.66

°ø°£¿ëÀûºñ(%) = °ø°£¿ëÀû / °øĪ¿ë·® * 100
Ratio of vapour Space, vRatio = Vhil / Vnom * 100(%)
uAry[1][3] = [ 1 | bar | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = bar | ]
uAry[1][3].substring(0,1).trim() = [1]
uid = [1]
cAry.length = [36] cAry[0].length = [12]
sph.MYANG_SET();
sph.CODE_CALC( );
MATERIAL LIST
No.F0F1F2F3F4F5F6F7F8F9F10F11F12F13F14F15F16F17F18F19F20F21F22F23F24F25F26F27F28F29F30F31F32F33F34Cylindrical Shell
No.TNOCODECONTENTSGDiCAHTHHLLPiPeMDMTDTEMPCQTYMSGMATLSdgtReq
Used
Thk
6Roark
tRoark
1_ASME
tASME
td_2
tTest
td_3
tMAWP
td_5
tMAP
td_5
tVacuum
Shell
Qty
Net
Weight
Ton
Column
Qty
Tank Height
BASE to EQ. Line
(mm)
Upp. Colume
Height(mm)
Low. Colume
Height(mm)
Column
PCD
mm
BRACE
ºÎÂø°¢µµ
(o)deg.
Column
Size
Shell
°¢µµ
ºÐÇÒ¼ö
Spherical
Top ~ Btm
µÎ²²(mm)
Shell matl id, Sd
MPa
Cyl.
td
(mm)
Cyl.
tt
(mm)
Cyl.
tt(MAWP)
(mm)
Cyl.
tt(MAP)
(mm)
1V-1110A/BDIV. 11,3 Butane0.6215156503.010825140806.01.01325-196810OKSA516-70138.0026.5 ~ 28.522.4527.3319.5220.1123.5225.4238165.1029 EA10825338074451526035.0319©ª 812.8x8.74t1126.5 ~ 28.5matid=3, Sd= 138.0 MPa, 51.8139.1140.2947.13
2V-1110A/BDIV. 11,3 Butane0.6215156503.010825140806.01.01325-196810OKSA516-70138.0026.5 ~ 26.522.4522.4615.6118.7122.8825.4238160.0649 EA10825338074451526035.0319©ª 812.8x8.74t1126.5 ~ 26.5matid=3, Sd= 138.0 MPa, 42.0231.2737.4745.82
3V-1110A/BDIV. 2Propylene0.59252001.515600202668.3356531.01325-196814OKSA537-CL2230.0035.5 ~ 35.527.5527.5820.6226.3929.8434.3688555.96714 EA156004800108002469026.9628©ª 1066.8x15.09t1335.5 ~ 35.5matid=6, Sd= 230.0 MPa, t ¡Â 64t53.7141.2752.8459.74


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : V-1110A/BÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(1/3) Tank No. : [V-1110A/B] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 15650 mm, DLL = 14080 mm, CA = 3 mm, SG = 0.6215, Pg = 600 kPa, Pe = 101.325 kPa
, SA516-70 matid=3, Sd= 138.0 MPa, St= 234.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o15650.020.0224.2816.9020.3125.4226.5#130.0oSA516-7026.52731.48194.334,42313,270typ=0
10.0o10.0o15531.120.0224.2816.9220.3425.4226.5typ=4
20.0o30.0o14601.620.0224.2817.1120.5325.4226.5typ=4
220.0o50.0o12854.820.2324.5517.4720.8825.4226.5#220.0oSA516-7026.52731.48677.243,83015,319typ=3
316.0o66.0o11007.720.5624.9517.8521.2625.4226.5#316.0oSA516-7026.52495.38194.363,14918,892typ=3
424.0o90.0o7825.021.3225.6418.5021.9125.4227.5#464.0oSA516-7027.52731.48840.6184,84387,165typ=1
40.0o130.0o2795.221.9726.7319.5422.9525.4227.5typ=4
520.0o150.0o1048.422.2727.1019.8923.3125.4228.0#520.0oSA516-7028.02731.48477.244,04616,186typ=3
620.0o170.0o118.922.4327.3020.0823.5025.4228.5#630.0oSA516-7028.52731.48194.334,75714,271typ=2
10.0o180.0o0.022.4527.3320.1123.5225.4228.5typ=4
Sub-Total38Sht165,102kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO102]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : V-1110A/BÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(2/3) Tank No. : [V-1110A/B] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 15650 mm, DLL = 14080 mm, CA = 3 mm, SG = 0.6215, Pg = 600 kPa, Pe = 101.325 kPa
, SA516-70 matid=3, Sd= 138.0 MPa, St= 234.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o15650.020.0220.0216.1420.3125.4226.5#130.0oSA516-7026.52731.48194.334,42313,270typ=0
10.0o10.0o15531.120.0220.0216.1620.3325.4226.5typ=4
20.0o30.0o14601.620.0220.0216.3120.4825.4226.5typ=4
220.0o50.0o12854.820.2320.2416.6020.7725.4226.5#220.0oSA516-7026.52731.48677.243,83015,319typ=3
316.0o66.0o11007.720.5620.5616.9021.0725.4226.5#316.0oSA516-7026.52495.38194.363,14918,892typ=3
424.0o90.0o7825.021.3121.1117.4221.5925.4226.5#464.0oSA516-7026.52731.48840.6184,66683,996typ=1
40.0o130.0o2795.221.9721.9818.2522.4225.4226.5typ=4
520.0o150.0o1048.422.2722.2818.5322.7025.4226.5#520.0oSA516-7026.52731.48477.243,83015,319typ=3
620.0o170.0o118.922.4322.4418.6922.8625.4226.5#630.0oSA516-7026.52731.48194.334,42313,270typ=2
10.0o180.0o0.022.4522.4618.7122.8825.4226.5typ=4
Sub-Total38Sht160,064kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO103]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : V-1110A/BÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(3/3) Tank No. : [V-1110A/B] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 25200 mm, DLL = 20266 mm, CA = 1.5 mm, SG = 0.59, Pg = 833.565 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o25200.024.3424.3622.4425.8834.3635.5#119.2oSA537-CL235.52814.98444.636,29318,879typ=0
6.4o6.4o25121.524.3424.3622.4525.8934.3635.5typ=4
12.8o19.2o24499.124.3424.3622.5525.9934.3635.5typ=4
212.8o32.0o23285.424.3424.3622.7426.1834.3635.5#212.8oSA537-CL235.52814.99642.745,84023,361typ=3
39.5o41.5o22036.824.3424.3622.9326.3734.3635.5#39.5oSA537-CL235.51873.58796.593,06127,546typ=3
445.5o87.0o13259.425.5025.4724.3127.7534.3635.5#445.5oSA537-CL235.52823.610050.0286,916193,649typ=3
53.0o90.0o12600.025.5425.5824.4227.8634.3635.5#551.5oSA537-CL235.52827.411425.4287,955222,746typ=1
48.5o138.5o3163.227.0527.0725.9029.3434.3635.5typ=4
69.5o148.0o1914.627.2527.2726.0929.5434.3635.5#69.5oSA537-CL235.51873.58796.593,06127,546typ=3
712.8o160.8o700.927.4427.4626.2829.7334.3635.5#712.8oSA537-CL235.52814.99442.745,84023,361typ=3
812.8o173.6o78.527.5427.5626.3829.8234.3635.5#819.2oSA537-CL235.52814.98444.636,29318,879typ=2
6.4o180.0o0.027.5527.5826.3929.8434.3635.5typ=4
Sub-Total88Sht555,967kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO104]

CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=861.3 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o15656.000600.0600.020.0224.2826.50.7+0.380.66250.74731.0¥òeq = 104.3731 / 11
P110.0o10.0o15537.100600.020.0224.2826.50.7+0.380.66250.74731.0¥òeq = 104.3732 / 11
P220.0o30.0o14607.200600.020.0224.2826.50.7+0.380.66250.74731.0¥òeq = 104.3733 / 11
P320.0o50.0o12859.71223.37.5607.520.2324.5526.50.7+0.380.65500.74731.0¥òeq = 105.6864 / 11
P416.0o66.0o11011.93071.118.7618.720.5624.9526.50.7+0.380.64380.74731.0¥òeq = 105.375 / 11
P524.0o90.0o7828.06255.038.1638.121.3225.6427.50.7+0.160.62440.74731.0¥òeq = 129.6456 / 11
40.0o130.0o2796.311286.768.8668.821.9726.7327.50.7+0.070.62180.77541.0¥òeq = 106.8738 / 11
P620.0o150.0o1048.813034.279.4679.422.2727.1028.00.7+0.200.62530.78951.0¥òeq = 106.3779 / 11
P720.0o170.0o118.913964.185.1685.122.4327.3028.50.7+0.500.63370.80361.0¥òeq = 105.15710 / 11
P810.0o180.0o014083.085.8685.822.4527.3328.50.7+0.470.63300.80360.62180.74731.0¥òeq = 105.26911 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.6000MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.6218MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.7473MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=808.3 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o15650.000808.3808.316.3116.9020.3126.50.66250.7473¥òeq = 173.8891 / 11
P110.0o10.0o15531.1118.91.2809.516.3316.9220.3426.50.66250.7473¥òeq = 174.2272 / 11
P220.0o30.0o14601.61048.410.3818.616.5217.1120.5326.50.66250.7473¥òeq = 170.5713 / 11
P320.0o50.0o12854.82795.227.4835.716.8817.4720.8826.50.65500.7473¥òeq = 175.4844 / 11
P416.0o66.0o11007.74642.345.5853.817.2617.8521.2626.50.64380.7473¥òeq = 174.6035 / 11
P524.0o90.0o7825.07825.076.7885.017.9118.5021.9127.50.62440.7473¥òeq = 211.9086 / 11
40.0o130.0o2795.212854.8126.1934.418.9419.5422.9527.50.62180.7754¥òeq = 177.6548 / 11
P620.0o150.0o1048.414601.6143.2951.519.3019.8923.3128.00.62530.7895¥òeq = 176.249 / 11
P720.0o170.0o118.915531.1152.3960.619.4920.0823.5028.50.63370.8036¥òeq = 178.38810 / 11
P810.0o180.0o015650.0153.5961.819.5220.1123.5228.50.63300.8036¥òeq = 173.4111 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.6000at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.78007.9538
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.6218at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.80838.2424
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.7473at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =0.97159.9065


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=808.3 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o15656.00015650.00023.5026.50.66250.7473111.35841 / 11
P110.0o10.0o15537.10015531.1118.91.223.5026.50.66250.7473111.35842 / 11
P220.0o30.0o14607.20014601.61048.410.323.5026.50.66250.7473111.35843 / 11
P320.0o50.0o12859.71223.37.512854.82795.227.423.5026.50.65500.7473111.35844 / 11
P416.0o66.0o11011.93071.118.711007.74642.345.523.5026.50.64380.7473111.35845 / 11
P524.0o90.0o7828.06255.038.17825.07825.076.723.5026.50.62440.7473111.35846 / 11
40.0o130.0o2796.311286.768.82795.212854.8126.124.5027.50.62180.7754121.01078 / 11
P620.0o150.0o1048.813034.279.41048.414601.6143.225.0028.00.62530.7895125.98639 / 11
P720.0o170.0o118.913964.185.1118.915531.1152.325.5028.50.63370.8036131.061510 / 11
P810.0o180.0o014083.085.8015650.0153.525.5028.50.63300.8036131.061511 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.6000at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.78007.9538
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.6218at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.80838.2424
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.7473at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =0.97159.9065
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA516-70
Maximum. Allowable External PressureMAEP =111.35841.1355CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=111.3584 kPa)
¡Ü Shell MaterialMATL =SA516-70
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =260.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 234.0 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 23.5 mm
Outside Radius of tank top headRo = 7851.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003741
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-2)Factor B =37.20554 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =111.3584 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=808.3 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0224.316.9020.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o20.0224.316.9220.3425.4226.50.7+0.382 / 11
P220.0o30.0o20.0224.317.1120.5325.4226.50.7+0.383 / 11
P320.0o50.0o20.2324.617.4720.8825.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.5625.017.8521.2625.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o21.3225.618.5021.9125.4227.50.7+0.16#464.027.52731.48840.6184,84387,1656 / 11
40.0o130.0o21.9726.719.5422.9525.4227.50.7+0.078 / 11
P620.0o150.0o22.2727.119.8923.3125.4228.00.7+0.20#520.028.02731.48477.244,04616,1869 / 11
P720.0o170.0o22.4327.320.0823.5025.4228.50.7+0.50#630.028.52731.48194.334,75714,27110 / 11
P810.0o180.0o22.4527.320.1123.5225.4228.50.7+0.4711 / 11
], CalcRpt[i][1]=[Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 25.42 mm; Pe :101.33 kPa ¡Â Pa = 101.38 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003570; Factor_B = 35.499 MPa


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=15650 (cm), Sd=138 MPa, Pg=0.6 (kg/cm©÷), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=266.671, N¥õ=31.757
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7828mm782.8cm
4¡¡L = Design Liquid levelL = 14080mm1408.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 13,575,710N1384337.2Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.6MPa6.118Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6220.6215
10¡¡¥ã = Liquid Density¥ã = 6.094833E-6N/mm©ø621.5Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.51015degree0.44524radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 36.96007degree0.64507radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99357760.9935776
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.14966191.1496619
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43067090.4306709
20¡¡C5 = 22 / ¥õC5 = 0.86240200.8624020
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43067090.4306709
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2348.4N-mm23.947Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 266.671N-mm2.719Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 31.757N-mm0.324Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 2764.79N/mm2819.301Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2142.12N/mm2184.354Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 27.33mm2.733cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.32mm2.132cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 99.14MPa1010.947Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 679,873,690N-mm6932.782¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 246,165,559N-mm2510.19¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 342,021,159N-mm3487.645¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 114,836,452N-mm1171.006¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 202.422N/mm206.413Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 392,500,102N-mm4002.387¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 207,801,468N-mm2118.985¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 55,262,047mm©ø55.262¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,323,586,510mm©ø3323.587¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4129E-52.4129E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.28256E-37.28256E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1714.056mm171.406cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 52.708N/mm53.747Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 37,314,775N-mm380.505¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 18,771,785N-mm191.419¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 707,956mm©ø7079.563cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 181,292,990mm©ø181.293¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 256.079mm25.608cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 507.08mm50.708cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 238.035N/mm242.728Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 164.257N/mm167.496Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,140,324N116280.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 32807.354N3345.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6742.584mm674.258cm

piDeg=[25.510146359306425] piRad=[0.4452360466355415] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Sd=138 MPa, Pg=0.6 (kg/cm©÷), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015656.0000.62348.42348.402348.40104.37 < OK 13820.0224.2825.54.2624.370000
P11015537.1000.62348.42348.402348.40104.37 < OK 13820.0224.2825.54.2624.370000
P23014607.2000.62348.42348.402348.40104.37 < OK 13820.0224.2825.54.2624.370000
P35012859.71223.30.00750.60752348.452.965.402401.362353.80105.69 < OK 13820.2324.5525.54.3223.420.8510.0870.1420.014
P46611011.93071.10.01870.61872348.4128.0118.512476.412366.91105.37 < OK 13820.5624.9526.04.3923.642.0570.2970.3430.05
P5907828.06255.00.03810.63812348.4266.6731.76202.4252.71238.04164.262764.792142.12129.64 < OK 13821.3225.6422.54.326.054.2840.510.7140.085Column Attached Equator Plate
1302796.311286.70.06880.66882348.4233.48305.022581.882653.42106.87 < OK 13821.9726.7227.54.7522.563.7514.90.6250.817
P61501048.813034.20.07940.67942348.4298.13323.742646.532672.14106.38 < OK 13822.2727.1028.04.8322.924.7895.2010.7980.867
P7170118.913964.10.08510.68512348.4331.69334.542680.092682.94105.16 < OK 13822.4327.3028.54.8723.805.3295.3740.8880.896
P8180014083.00.08580.68582348.4335.95335.952684.352684.35105.27 < OK 13822.4527.3328.54.8823.725.3975.3970.90.9


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=15650 (cm), Syt=234 MPa, MAWP=0.78 (kg/cm©÷), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=500.389, N¥õ=100.078
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7825mm782.5cm
4¡¡L = Hydrostatic-test Water LevelL = 15650mm1565.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,895,976N2130796.5Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 234MPaS = 234.0MPa2386.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.6MPa6.118Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.5913degree0.44665radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99341810.9934181
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.15307341.1530734
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43194890.4319489
20¡¡C5 = 22 / ¥õC5 = 0.85966700.8596670
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43194890.4319489
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2347.5N-mm23.938Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 500.389N-mm5.103Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 100.078N-mm1.021Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3077.31N/mm3137.983Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2082.21N/mm2123.263Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 15.75mm1.575cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 11.77mm1.177cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 162.047MPa1652.42Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,046,072,706N-mm10666.973¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 377,464,366N-mm3849.065¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 526,243,337N-mm5366.189¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 176,162,442N-mm1796.357¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 309.819N/mm315.927Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 603,943,405N-mm6158.509¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 319,651,412N-mm3259.537¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 39,961,510mm©ø39.962¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,350,271,797mm©ø3350.272¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4514E-52.4514E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.351823E-37.351823E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1718.668mm171.867cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 80.4N/mm81.985Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 57,414,094N-mm585.461¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 28,883,063N-mm294.525¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 714,103mm©ø7141.03cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 183,950,286mm©ø183.95¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 257.596mm25.76cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 510.051mm51.005cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 365.366N/mm372.57Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 252.387N/mm257.363Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,756,969N179160.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 50833.599N5183.6Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6760.0mm676.0cm

piDeg=[25.59130479672834] piRad=[0.44665252858432775] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Syt=234 MPa, MAWP=0.78 (kg/cm©÷), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015650.0000.62347.52347.502347.50173.89 < OK 23410.0312.5413.52.5125.690000
P11015531.1118.90.00120.60122347.56.852.272354.352349.77174.23 < OK 23410.0512.5713.52.5225.540.0680.0230.0110.004
P23014601.61048.40.01030.61032347.560.8219.632408.322367.13170.57 < OK 23410.2112.7614.02.5527.110.6080.1960.1010.033
P35012854.82795.20.02740.62742347.5164.7649.742512.262397.24175.48 < OK 23410.5013.1214.02.6225.011.6460.4970.2740.083
P46611007.74642.30.04550.64552347.5279.7076.542627.202424.04174.60 < OK 23410.8213.5014.52.6825.382.7950.7650.4660.127
P5907825.07825.00.07670.67672347.5500.39100.08309.8280.40365.37252.393077.312082.21211.91 < OK 23411.7714.1513.02.389.44510.8330.167Column Attached Equator Plate
1302795.212854.80.12610.72612347.5435.71550.732783.212898.23177.65 < OK 23412.1515.1816.03.0324.084.3545.5030.7260.917
P61501048.414601.60.14320.74322347.5539.65580.842887.152928.34176.24 < OK 23412.4315.5416.53.1124.685.3925.8040.8990.967
P7170118.915531.10.15230.75232347.5593.62598.192941.122945.69178.39 < OK 23412.5815.7316.53.1523.775.9325.9770.9890.996
P8180015650.00.15350.75352347.5600.47600.472947.972947.97173.41 < OK 23412.6015.7517.03.1525.896611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 38
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 165102.233
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 15650
MRA(sWt[tid][20][10])= 769.446
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =9Columns
2. gCol[tid][2] =Column ODOD =812.8mm
3. gCol[tid][3] =Column thkthk =8.74mm
4. gCol[tid][4] =Tank HeightHtank =10825mm
5. gCol[tid][5] =Upper Column HeightUCHT =3380mm
6. gCol[tid][6] =Lower Column HeightLCHT =7445mm
7. gCol[tid][7] =Column P.C.DPCD =15260mm
8. gCol[tid][8] =Brace AngleBRang =35.0319deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.818deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-70t26.5 ~ 28SHT38165.102201.425000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt28, t11¡¿2853¡¿3380SHT98.6259.488000,000000,0002
3LOWER COLUMN (PIPE)null¨ª812.8¡¿8.74t ¡¿ 7445LPCS911.61211.612000,000000,0003
4BRACE ( PIPE, ¥è= 35.0319 deg.)null¨ª0¡¿0t ¡¿ 9092LPCS18000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-70(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-70PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL74185.339222.524000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1076.5 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o15656.000600.0600.020.0220.0226.50.7+0.380.82810.93411.0¥òeq = 130.4671 / 11
P110.0o10.0o15537.100600.020.0220.0226.50.7+0.380.82810.93411.0¥òeq = 130.4672 / 11
P220.0o30.0o14607.200600.020.0220.0226.50.7+0.380.82810.93411.0¥òeq = 130.4673 / 11
P320.0o50.0o12859.71223.37.5607.520.2320.2426.50.7+0.380.82060.93411.0¥òeq = 132.1084 / 11
P416.0o66.0o11011.93071.118.7618.720.5620.5626.50.7+0.380.80940.93411.0¥òeq = 131.0015 / 11
P524.0o90.0o7828.06255.038.1638.121.3121.1126.50.7+0.380.79000.93411.0¥òeq = 129.5786 / 11
40.0o130.0o2796.311286.768.8668.821.9721.9826.50.7+0.380.75930.93411.0¥òeq = 130.9198 / 11
P620.0o150.0o1048.813034.279.4679.422.2722.2826.50.7+0.380.74870.93411.0¥òeq = 129.7289 / 11
P720.0o170.0o118.913964.185.1685.122.4322.4426.50.7+0.380.74300.93411.0¥òeq = 130.80610 / 11
P810.0o180.0o014083.085.8685.822.4522.4626.50.7+0.380.74230.93410.74230.93411.0¥òeq = 130.94411 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.6000MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.7423MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.9341MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o15650.000965.0965.013.0516.1420.3126.50.82810.9341¥òeq = 213.4091 / 11
P110.0o10.0o15531.1118.91.2966.213.0716.1620.3326.50.82810.9341¥òeq = 213.8242 / 11
P220.0o30.0o14601.61048.410.3975.313.2216.3120.4826.50.82810.9341¥òeq = 217.093 / 11
P320.0o50.0o12854.82795.227.4992.413.5016.6020.7726.50.82060.9341¥òeq = 213.6324 / 11
P416.0o66.0o11007.74642.345.51010.513.8116.9021.0726.50.80940.9341¥òeq = 210.9785 / 11
P524.0o90.0o7825.07825.076.71041.714.3317.4221.5926.50.79000.9341¥òeq = 211.7636 / 11
40.0o130.0o2795.212854.8126.11091.115.1518.2522.4226.50.75930.9341¥òeq = 218.6518 / 11
P620.0o150.0o1048.414601.6143.21108.215.4418.5322.7026.50.74870.9341¥òeq = 215.4059 / 11
P720.0o170.0o118.915531.1152.31117.315.5918.6922.8626.50.74300.9341¥òeq = 218.0310 / 11
P810.0o180.0o015650.0153.51118.515.6118.7122.8826.50.74230.9341¥òeq = 218.36811 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.6000at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.78007.9538
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7423at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.96509.8403
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9341at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.214312.3824


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o15656.00015650.00023.5026.50.82810.9341111.35841 / 11
P110.0o10.0o15537.10015531.1118.91.223.5026.50.82810.9341111.35842 / 11
P220.0o30.0o14607.20014601.61048.410.323.5026.50.82810.9341111.35843 / 11
P320.0o50.0o12859.71223.37.512854.82795.227.423.5026.50.82060.9341111.35844 / 11
P416.0o66.0o11011.93071.118.711007.74642.345.523.5026.50.80940.9341111.35845 / 11
P524.0o90.0o7828.06255.038.17825.07825.076.723.5026.50.79000.9341111.35846 / 11
40.0o130.0o2796.311286.768.82795.212854.8126.123.5026.50.75930.9341111.35848 / 11
P620.0o150.0o1048.813034.279.41048.414601.6143.223.5026.50.74870.9341111.35849 / 11
P720.0o170.0o118.913964.185.1118.915531.1152.323.5026.50.74300.9341111.358410 / 11
P810.0o180.0o014083.085.8015650.0153.523.5026.50.74230.9341111.358411 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.6000at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.78007.9538
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7423at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.96509.8403
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9341at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.214312.3824
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA516-70
Maximum. Allowable External PressureMAEP =111.35841.1355CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=111.3584 kPa)
¡Ü Shell MaterialMATL =SA516-70
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =260.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 234.0 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 23.5 mm
Outside Radius of tank top headRo = 7851.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003741
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-2)Factor B =37.20554 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =111.3584 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=600 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0220.016.1420.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o20.0220.016.1620.3325.4226.50.7+0.382 / 11
P220.0o30.0o20.0220.016.3120.4825.4226.50.7+0.383 / 11
P320.0o50.0o20.2320.216.6020.7725.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.5620.616.9021.0725.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o21.3121.117.4221.5925.4226.50.7+0.38#464.026.52731.48840.6184,66683,9966 / 11
40.0o130.0o21.9722.018.2522.4225.4226.50.7+0.388 / 11
P620.0o150.0o22.2722.318.5322.7025.4226.50.7+0.38#520.026.52731.48477.243,83015,3199 / 11
P720.0o170.0o22.4322.418.6922.8625.4226.50.7+0.38#630.026.52731.48194.334,42313,27010 / 11
P810.0o180.0o22.4522.518.7122.8825.4226.50.7+0.3811 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm©÷(=600 kPa), Pe= 1.01325 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=808.3 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0224.316.9020.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o20.0224.316.9220.3425.4226.50.7+0.382 / 11
P220.0o30.0o20.0224.317.1120.5325.4226.50.7+0.383 / 11
P320.0o50.0o20.2324.617.4720.8825.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.5625.017.8521.2625.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o21.3225.618.5021.9125.42TD90USED0.7+0.16#464.027.52731.48840.6184,84387,1656 / 11
40.0o130.0o21.9726.719.5422.9525.4227.50.7+0.078 / 11
P620.0o150.0o22.2727.119.8923.3125.4228.00.7+0.20#520.028.02731.48477.244,04616,1869 / 11
P720.0o170.0o22.4327.320.0823.5025.4228.50.7+0.50#630.028.52731.48194.334,75714,27110 / 11
P810.0o180.0o22.4527.320.1123.5225.4228.50.7+0.4711 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 25.42 mm; Pe :101.33 kPa ¡Â Pa = 101.38 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003570; Factor_B = 35.499 MPa


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=15650 (cm), Sd=138 MPa, Pg=0.6 (kg/cm©÷), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=266.671, N¥õ=31.757
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7828mm782.8cm
4¡¡L = Design Liquid levelL = 14080mm1408.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 13,279,549N1354137.2Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.6MPa6.118Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6220.6215
10¡¡¥ã = Liquid Density¥ã = 6.094833E-6N/mm©ø621.5Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.51015degree0.44524radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 36.96007degree0.64507radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99357760.9935776
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.14966191.1496619
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43067090.4306709
20¡¡C5 = 22 / ¥õC5 = 0.86240200.8624020
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43067090.4306709
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2348.4N-mm23.947Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 266.671N-mm2.719Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 31.757N-mm0.324Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 2761.52N/mm2815.967Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2147.31N/mm2189.647Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.46mm2.246cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.31mm2.131cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 123.257MPa1256.872Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 665,041,909N-mm6781.54¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 240,795,336N-mm2455.429¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 334,559,798N-mm3411.561¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 112,331,238N-mm1145.46¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 198.006N/mm201.91Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 383,937,518N-mm3915.073¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 203,268,176N-mm2072.759¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 45,566,951mm©ø45.567¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,323,586,510mm©ø3323.587¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4129E-52.4129E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.28256E-37.28256E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1714.056mm171.406cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 51.558N/mm52.575Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 36,500,735N-mm372.204¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 18,362,269N-mm187.243¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 707,956mm©ø7079.563cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 181,292,990mm©ø181.293¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 256.079mm25.608cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 507.08mm50.708cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 232.843N/mm237.434Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 160.674N/mm163.842Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,115,447N113744.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 32091.645N3272.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6742.584mm674.258cm

piDeg=[25.510146359306425] piRad=[0.4452360466355415] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Sd=138 MPa, Pg=0.6 (kg/cm©÷), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015656.0000.62348.42348.402348.40130.47 < OK 13820.0220.0221.05.460000
P11015537.1000.62348.42348.402348.40130.47 < OK 13820.0220.0221.05.460000
P23014607.2000.62348.42348.402348.40130.47 < OK 13820.0220.0221.05.460000
P35012859.71223.30.00750.60752348.452.965.402401.362353.80132.11 < OK 13820.2320.2421.00.014.270.8510.0870.1420.014
P46611011.93071.10.01870.61872348.4128.0118.512476.412366.91131.00 < OK 13820.5620.5621.55.072.0570.2970.3430.05
P5907828.06255.00.03810.63812348.4266.6731.76198.0151.56232.84160.672761.522147.31129.58 < OK 13821.3121.1122.5-0.206.104.2840.510.7140.085Column Attached Equator Plate
1302796.311286.70.06880.66882348.4233.48305.022581.882653.42130.92 < OK 13821.9721.9823.00.015.133.7514.90.6250.817
P61501048.813034.20.07940.67942348.4298.13323.742646.532672.14129.73 < OK 13822.2722.2823.50.015.994.7895.2010.7980.867
P7170118.913964.10.08510.68512348.4331.69334.542680.092682.94130.81 < OK 13822.4322.4423.50.015.215.3295.3740.8880.896
P8180014083.00.08580.68582348.4335.95335.952684.352684.35130.94 < OK 13822.4522.4623.50.015.115.3975.3970.90.9


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=15650 (cm), Syt=234 MPa, MAWP=0.78 (kg/cm©÷), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=500.389, N¥õ=100.078
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7825mm782.5cm
4¡¡L = Hydrostatic-test Water LevelL = 15650mm1565.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,659,047N2106636.5Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 234MPaS = 234.0MPa2386.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.6MPa6.118Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.5913degree0.44665radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99341810.9934181
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.15307341.1530734
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43194890.4319489
20¡¡C5 = 22 / ¥õC5 = 0.85966700.8596670
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43194890.4319489
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2347.5N-mm23.938Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 500.389N-mm5.103Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 100.078N-mm1.021Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3074.71N/mm3135.332Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2086.35N/mm2127.485Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 12.6mm1.26cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 11.76mm1.176cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 203.92MPa2079.405Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,034,211,828N-mm10546.026¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 373,184,492N-mm3805.423¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 520,276,536N-mm5305.344¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 174,165,027N-mm1775.989¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 306.306N/mm312.345Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 597,095,603N-mm6088.681¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 316,027,050N-mm3222.579¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 32,164,142mm©ø32.164¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,350,271,797mm©ø3350.272¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4514E-52.4514E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.351823E-37.351823E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1718.668mm171.867cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 79.489N/mm81.056Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 56,763,105N-mm578.823¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 28,555,573N-mm291.186¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 714,103mm©ø7141.03cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 183,950,286mm©ø183.95¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 257.596mm25.76cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 510.051mm51.005cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 361.224N/mm368.346Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 249.525N/mm254.445Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,737,047N177129.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 50257.224N5124.8Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6760.0mm676.0cm

piDeg=[25.59130479672834] piRad=[0.44665252858432775] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Syt=234 MPa, MAWP=0.78 (kg/cm©÷), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015650.0000.62347.52347.502347.50213.41 < OK 23410.0310.0311.08.800000
P11015531.1118.90.00120.60122347.56.852.272354.352349.77213.82 < OK 23410.0510.0511.08.620.0680.0230.0110.004
P23014601.61048.40.01030.61032347.560.8219.632408.322367.13217.09 < OK 23410.2110.2111.07.230.6080.1960.1010.033
P35012854.82795.20.02740.62742347.5164.7649.742512.262397.24213.63 < OK 23410.5010.4911.5-0.018.701.6460.4970.2740.083
P46611007.74642.30.04550.64552347.5279.7076.542627.202424.04210.98 < OK 23410.8210.8012.0-0.029.842.7950.7650.4660.127
P5907825.07825.00.07670.67672347.5500.39100.08306.3179.49361.22249.523074.712086.35211.76 < OK 23411.7611.3213.0-0.449.50510.8330.167Column Attached Equator Plate
1302795.212854.80.12610.72612347.5435.71550.732783.212898.23218.65 < OK 23412.1512.1413.0-0.016.564.3545.5030.7260.917
P61501048.414601.60.14320.74322347.5539.65580.842887.152928.34215.40 < OK 23412.4312.4313.57.955.3925.8040.8990.967
P7170118.915531.10.15230.75232347.5593.62598.192941.122945.69218.03 < OK 23412.5812.5813.56.825.9325.9770.9890.996
P8180015650.00.15350.75352347.5600.47600.472947.972947.97218.37 < OK 23412.6012.6013.56.686611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 38
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 160064.008
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 15650
MRA(sWt[tid][20][10])= 769.446
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =9Columns
2. gCol[tid][2] =Column ODOD =812.8mm
3. gCol[tid][3] =Column thkthk =8.74mm
4. gCol[tid][4] =Tank HeightHtank =10825mm
5. gCol[tid][5] =Upper Column HeightUCHT =3380mm
6. gCol[tid][6] =Lower Column HeightLCHT =7445mm
7. gCol[tid][7] =Column P.C.DPCD =15260mm
8. gCol[tid][8] =Brace AngleBRang =35.0319deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.818deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-70t26.5 ~ 26.5SHT38160.064195.278000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt26.5, t11¡¿2853¡¿3380SHT98.5559.411000,000000,0002
3LOWER COLUMN (PIPE)null¨ª812.8¡¿8.74t ¡¿ 7445LPCS911.61211.612000,000000,0003
4BRACE ( PIPE, ¥è= 35.0319 deg.)null¨ª0¡¿0t ¡¿ 9092LPCS18000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-70(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-70PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL74180.231216.301000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 2, Di = 25200 mm, CA = 1.5 mm, SG = 0.59, Pg= 8.335653 kg/cm2(=833.565 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1549.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 68 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o25203.000833.6833.624.3424.3635.50.7+0.441.23951.29421.0¥òeq = 218.8461 / 13
P16.4o6.4o25124.500833.624.3424.3635.50.7+0.441.23951.29421.0¥òeq = 218.8462 / 13
P212.8o19.2o24502.100833.624.3424.3635.50.7+0.441.23951.29421.0¥òeq = 218.8463 / 13
P312.8o32.0o23288.200833.624.3424.3635.50.7+0.441.23951.29421.0¥òeq = 218.8464 / 13
P49.5o41.5o22039.500833.624.3424.3635.50.7+0.441.23951.29421.0¥òeq = 218.8465 / 13
P545.5o87.0o13261.07006.540.5874.125.5025.4735.50.7+0.441.19901.29421.0¥òeq = 220.8436 / 13
P63.0o90.0o12601.57666.044.4878.025.5425.5835.50.7+0.441.19511.29421.0¥òeq = 221.27 / 13
48.5o138.5o3163.517104.099.0932.627.0527.0735.50.7+0.441.14051.29421.0¥òeq = 221.7659 / 13
P79.5o148.0o1914.818352.7106.2939.827.2527.2735.50.7+0.441.13331.29421.0¥òeq = 219.32210 / 13
P812.8o160.8o700.919566.6113.2946.827.4427.4635.50.7+0.441.12631.29421.0¥òeq = 220.9511 / 13
P912.8o173.6o78.520189.0116.8950.427.5427.5635.50.7+0.441.12271.29421.0¥òeq = 221.78912 / 13
P106.4o180.0o020267.5117.3950.927.5527.5835.50.7+0.441.12221.29421.12221.29421.0¥òeq = 221.89513 / 13
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.8336MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.1222MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.2942MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 2, Di = 25200 mm, CA = 1.5 mm, SG = 0.59, Pg= 8.335653 kg/cm2(=833.565 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1402.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 68 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o25200.0001402.81402.816.6622.4425.8835.51.23951.2942¥òeq = 362.1851 / 13
P16.4o6.4o25121.578.50.81403.616.6722.4525.8935.51.23951.2942¥òeq = 362.5192 / 13
P212.8o19.2o24499.1700.96.91409.716.7722.5525.9935.51.23951.2942¥òeq = 365.183 / 13
P312.8o32.0o23285.41914.618.81421.616.9622.7426.1835.51.23951.2942¥òeq = 370.4144 / 13
P49.5o41.5o22036.83163.231.01433.817.1622.9326.3735.51.23951.2942¥òeq = 363.3335 / 13
P545.5o87.0o13259.411940.6117.11519.918.5424.3127.7535.51.19901.2942¥òeq = 377.926 / 13
P63.0o90.0o12600.012600.0123.61526.418.6424.4227.8635.51.19511.2942¥òeq = 374.1967 / 13
48.5o138.5o3163.222036.8216.11618.920.1225.9029.3435.51.14051.2942¥òeq = 367.539 / 13
P79.5o148.0o1914.623285.4228.41631.220.3226.0929.5435.51.13331.2942¥òeq = 371.72910 / 13
P812.8o160.8o700.924499.1240.31643.120.5126.2829.7335.51.12631.2942¥òeq = 375.85511 / 13
P912.8o173.6o78.525121.5246.41649.220.6126.3829.8235.51.12271.2942¥òeq = 367.76912 / 13
P106.4o180.0o025200.0247.11649.920.6226.3929.8435.51.12221.2942¥òeq = 368.03113 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.8336at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.042010.6250
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.1222at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.402814.3046
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.2942at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.617816.4970


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 2, Di = 25200 mm, CA = 1.5 mm, SG = 0.59, Pg= 8.335653 kg/cm2(=833.565 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1402.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 68 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o25203.00025200.00034.0035.51.23951.2942108.44951 / 13
P16.4o6.4o25124.50025121.578.50.834.0035.51.23951.2942108.44952 / 13
P212.8o19.2o24502.10024499.1700.96.934.0035.51.23951.2942108.44953 / 13
P312.8o32.0o23288.20023285.41914.618.834.0035.51.23951.2942108.44954 / 13
P49.5o41.5o22039.50022036.83163.231.034.0035.51.23951.2942108.44955 / 13
P545.5o87.0o13261.07006.540.513259.411940.6117.134.0035.51.19901.2942108.44956 / 13
P63.0o90.0o12601.57666.044.412600.012600.0123.634.0035.51.19511.2942108.44957 / 13
48.5o138.5o3163.517104.099.03163.222036.8216.134.0035.51.14051.2942108.44959 / 13
P79.5o148.0o1914.818352.7106.21914.623285.4228.434.0035.51.13331.2942108.449510 / 13
P812.8o160.8o700.919566.6113.2700.924499.1240.334.0035.51.12631.2942108.449511 / 13
P912.8o173.6o78.520189.0116.878.525121.5246.434.0035.51.12271.2942108.449512 / 13
P106.4o180.0o020267.5117.3025200.0247.134.0035.51.12221.2942108.449513 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.8336at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.042010.6250
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.1222at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.402814.3046
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.2942at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.617816.4970
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =108.44951.1059CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=108.4495 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 2, Di = 25200 mm, CA = 1.5 mm, SG = 0.59, Pg= 8.335653 kg/cm2(=833.565 kPa), Pe= 1.01325 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1402.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 68 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o24.3424.422.4425.8834.3635.50.7+0.44#119.235.52814.98444.636,29318,8791 / 13
P16.4o6.4o24.3424.422.4525.8934.3635.50.7+0.442 / 13
P212.8o19.2o24.3424.422.5525.9934.3635.50.7+0.443 / 13
P312.8o32.0o24.3424.422.7426.1834.3635.50.7+0.44#212.835.52814.99642.745,84023,3614 / 13
P49.5o41.5o24.3424.422.9326.3734.3635.50.7+0.44#39.535.51873.58796.593,06127,5465 / 13
P545.5o87.0o25.5025.524.3127.7534.3635.50.7+0.44#445.535.52823.610050.0286,916193,6496 / 13
P63.0o90.0o25.5425.624.4227.8634.3635.50.7+0.44#551.535.52827.411425.4287,955222,7467 / 13
48.5o138.5o27.0527.125.9029.3434.3635.50.7+0.449 / 13
P79.5o148.0o27.2527.326.0929.5434.3635.50.7+0.44#69.535.51873.58796.593,06127,54610 / 13
P812.8o160.8o27.4427.526.2829.7334.3635.50.7+0.44#712.835.52814.99442.745,84023,36111 / 13
P912.8o173.6o27.5427.626.3829.8234.3635.50.7+0.44#819.235.52814.98444.636,29318,87912 / 13
P106.4o180.0o27.5527.626.3929.8434.3635.50.7+0.4413 / 13
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 3]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. V-1110A/BRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm©÷(=600 kPa), Pe= 1.01325 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o20.0220.016.1420.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o20.0220.016.1620.3325.4226.50.7+0.382 / 11
P220.0o30.0o20.0220.016.3120.4825.4226.50.7+0.383 / 11
P320.0o50.0o20.2320.216.6020.7725.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.5620.616.9021.0725.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o21.3121.117.4221.5925.42TD90USED0.7+0.38#464.026.52731.48840.6184,66683,9966 / 11
40.0o130.0o21.9722.018.2522.4225.4226.50.7+0.388 / 11
P620.0o150.0o22.2722.318.5322.7025.4226.50.7+0.38#520.026.52731.48477.243,83015,3199 / 11
P720.0o170.0o22.4322.418.6922.8625.4226.50.7+0.38#630.026.52731.48194.334,42313,27010 / 11
P810.0o180.0o22.4522.518.7122.8825.4226.50.7+0.3811 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 34.36 mm; Pe :101.33 kPa ¡Â Pa = 101.32 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=25200 (cm), Sd=230 MPa, Pg=0.8336 (kg/cm©÷), HT_UPPCOL = 47900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=524.463, N¥õ=34.475
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25200mm2520.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12601.5mm1260.15cm
4¡¡L = Design Liquid levelL = 20266mm2026.6cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 48,010,433N4895701.7Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.834MPa8.5Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.590.59
10¡¡¥ã = Liquid Density¥ã = 5.785924E-6N/mm©ø590.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.34352degree0.38997radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.53041degree0.91683radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99941280.9994128
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.01482121.0148212
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.38015870.3801587
20¡¡C5 = 22 / ¥õC5 = 0.98462570.9846257
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.38015870.3801587
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 5252.305N-mm53.559Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 524.463N-mm5.348Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 34.475N-mm0.352Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 5963.75N/mm6081.333Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 4902.97N/mm4999.638Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 27.58mm2.758cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 25.54mm2.554cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 204.815MPa2088.532Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,591,876,926N-mm16232.627¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 626,437,627N-mm6387.886¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 797,947,741N-mm8136.802¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 301,626,804N-mm3075.737¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 245.312N/mm250.149Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 955,219,973N-mm9740.533¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 491,381,902N-mm5010.701¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 110,976,170mm©ø110.976¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 9,447,028,349mm©ø9447.028¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.2458E-51.2458E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.904588E-34.904588E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2426.109mm242.611cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 58.329N/mm59.479Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 72,212,762N-mm736.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 36,197,528N-mm369.112¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,238,029mm©ø12380.29cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 392,425,006mm©ø392.425¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 316.976mm31.698cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 629.129mm62.913cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 383.813N/mm391.38Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 268.058N/mm273.343Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,641,155N269322.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 72849.193N7428.6Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9581.14mm958.114cm

piDeg=[22.34351511368315] piRad=[0.3899679052028861] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=25200 (cm), Sd=230 MPa, Pg=0.8336 (kg/cm©÷), HT_UPPCOL = 47900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025203.0000.83365252.315252.315252.31218.85 < OK 23024.3424.3625.50.024.850000
P16.425124.5000.83365252.315252.315252.31218.85 < OK 23024.3424.3625.50.024.850000
P219.224502.1000.83365252.315252.315252.31218.85 < OK 23024.3424.3625.50.024.850000
P33223288.2000.83365252.315252.315252.31218.85 < OK 23024.3424.3625.50.024.850000
P441.522039.5000.83365252.315252.315252.31218.85 < OK 23024.3424.3625.50.024.850000
P58713261.07006.50.04050.87415252.31477.0133.855729.315286.15220.84 < OK 23025.5025.4726.5-0.033.983.1150.2210.5190.037
P69012601.57666.00.04440.8785252.31524.4634.48245.3158.33383.81268.065963.754902.97221.20 < OK 23025.5425.5726.50.033.833.4250.2250.5710.038Column Attached Equator Plate
138.53163.517104.00.09900.93265252.31563.11683.965815.425936.26221.76 < OK 23027.0527.0728.00.023.583.6774.4660.6130.744
P71481914.818352.70.10620.93985252.31633.20704.925885.505957.22219.32 < OK 23027.2527.2728.50.024.644.1354.6030.6890.767
P8160.8700.919566.60.11320.94685252.31700.41726.215952.725978.52220.95 < OK 23027.4427.4628.50.023.934.5744.7420.7620.79
P9173.678.520189.00.11680.95045252.31734.57737.445986.875989.74221.79 < OK 23027.5427.5628.50.023.574.7974.8160.7990.803
P10180020267.50.11730.95095252.31738.87738.875991.175991.17221.90 < OK 23027.5527.5828.50.033.524.8254.8250.8040.804


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=25200 (cm), Syt=394.25 MPa, MAWP=1.042 (kg/cm©÷), HT_UPPCOL = 48000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=1297.42, N¥õ=259.484
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25200mm2520.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12600mm1260.0cm
4¡¡L = Hydrostatic-test Water LevelL = 25200mm2520.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 85,473,461N8715867.4Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.834MPa8.5Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.39269degree0.39083radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99932800.9993280
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.01693991.0169399
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.38095240.3809524
20¡¡C5 = 22 / ¥õC5 = 0.98246360.9824636
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.38095240.3809524
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 5251.68N-mm53.552Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 1297.42N-mm13.23Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 259.484N-mm2.646Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 6881.0N/mm7016.667Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 4829.28N/mm4924.495Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 17.28mm1.728cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 15.66mm1.566cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 333.742MPa3403.221Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 2,833,697,279N-mm28895.671¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 1,112,010,119N-mm11339.347¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 1,420,425,352N-mm14484.308¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 535,516,480N-mm5460.748¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 435.074N/mm443.652Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,700,945,657N-mm17344.819¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 874,882,792N-mm8921.322¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 84,055,443mm©ø84.055¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 9,504,219,121mm©ø9504.219¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.2596E-51.2596E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.936875E-34.936875E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2431.023mm243.102cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 103.171N/mm105.205Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 128,535,700N-mm1310.699¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 64,430,089N-mm657.004¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,245,846mm©ø12458.464cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 396,582,530mm©ø396.583¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 318.324mm31.832cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 631.784mm63.178cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 681.886N/mm695.33Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 476.558N/mm485.954Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 4,705,228N479799.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 130,274N13284.2Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9600.0mm960.0cm

piDeg=[22.39268780540163] piRad=[0.39082613057544163] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=25200 (cm), Syt=394.25 MPa, MAWP=1.042 (kg/cm©÷), HT_UPPCOL = 48000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025200.0000.83365251.685251.685251.68362.18 < OK 394.2513.3213.3314.50.018.130000
P16.425121.578.50.00080.83445251.687.282.425258.965254.10362.52 < OK 394.2513.3313.3414.50.018.050.0280.0090.0050.002
P219.224499.1700.90.00690.84055251.6865.1621.445316.845273.12365.18 < OK 394.2513.4313.4414.50.017.370.2510.0830.0420.014
P33223285.41914.60.01880.85245251.68179.0557.525430.735309.20370.41 < OK 394.2513.6213.6314.50.016.050.690.2220.1150.037
P441.522036.83163.20.03100.86465251.68297.8193.045549.495344.72363.33 < OK 394.2513.8213.8215.07.841.1480.3590.1910.06
P58713259.411940.60.11710.95075251.681217.29258.136468.975509.81377.92 < OK 394.2515.3415.2016.0-0.144.144.6910.9950.7820.166
P69012600.012600.00.12360.95725251.681297.42259.48435.07103.17681.89476.566881.004829.28374.20 < OK 394.2515.6615.3016.5-0.365.09510.8330.167Column Attached Equator Plate
138.53163.222036.80.21611.04975251.681259.091463.876510.776715.55367.53 < OK 394.2516.7816.7918.00.016.784.8525.6410.8090.94
P71481914.623285.40.22841.0625251.681377.851499.386629.536751.06371.73 < OK 394.2516.9716.9818.00.015.715.315.7780.8850.963
P8160.8700.924499.10.24031.07395251.681491.751535.466743.436787.14375.86 < OK 394.2517.1617.1718.00.014.675.7495.9170.9580.986
P9173.678.525121.50.24641.085251.681549.621554.486801.306806.16367.77 < OK 394.2517.2617.2718.50.016.725.9725.9910.9950.998
P10180025200.00.24711.08075251.681556.901556.906808.586808.58368.03 < OK 394.2517.2717.2818.50.016.656611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 88
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 555967.238
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 25200
MRA(sWt[tid][20][10])= 1995.038
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =14Columns
2. gCol[tid][2] =Column ODOD =1066.8mm
3. gCol[tid][3] =Column thkthk =15.09mm
4. gCol[tid][4] =Tank HeightHtank =15600mm
5. gCol[tid][5] =Upper Column HeightUCHT =4800mm
6. gCol[tid][6] =Lower Column HeightLCHT =10800mm
7. gCol[tid][7] =Column P.C.DPCD =24690mm
8. gCol[tid][8] =Brace AngleBRang =26.9628deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =11.5467deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t35.5 ~ 35.5SHT88555.967678.280000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt35.5, t17¡¿3651¡¿4800SHT1437.35941.095000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1066.8¡¿15.09t ¡¿ 10800LPCS1459.17459.174000,000000,0003
4BRACE ( PIPE, ¥è= 26.9628 deg.)null¨ª0¡¿0t ¡¿ 12117LPCS28000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL144652.500778.549000,000000,00012
]CODE_CALC() 111 Tank Qty = iMax = [5]
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [27.5]mm
]
sph.uAry.length = [2] uAry[0].length = [5]
sph.bAry.length = [38] bAry[0].length = [15]
sph.cAry.length = [36] cAry[0].length = [12]
sph.dAry.length = [36] dAry[0].length = [12]
tReq=[
tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1 tReq =  
PR
2SE £­ 0.2P
  £« CA

Div.1 tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1¡¡ tReq =  
P¡¤Rc
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA


½ÃÀ۽ð£ = [2024-12-05 09:21:34.0776]
Á¾·á½Ã°£ = [2024-12-05 09:21:34.0830]

HTML END!!!