HTML Ư¼ö¹®ÀÚ ¸®½ºÆ® (¡î ¡î ¡î ¥ð ©ª £í©÷£í©ø £í©ù, ©ö ©÷ ©ø ©ù, ©û©ü©ý©þ, ¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ¡É ¢º ¤º ¡îax2 + bx + c

½ÃÀ۽ð£ = [2024-12-05 09:35:12.0526]
req=[org.apache.catalina.connector.RequestFacade@7826fc2]
res=[org.apache.catalina.connector.ResponseFacade@4772d68]
conn=[com.mysql.jdbc.JDBC4Connection@3da1b0e]
cdAry[0] = []
cdAry[1] = [TABLE 1.1) String uAry[][]
query[0] = Select sid, SYMBOL, UNIT, DESCR, kid From S_DATA Where kid=7 and sid=0
sidSYMBOLUNITDESCRkid
0PUnitkg/cm©÷ 0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ | 7

]
cdAry[2] = [TABLE 2.1) String bAry[][] = S_RESULT
query[1] = Select sid, DESCR, UNIT, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,REMARK From S_RESULT Where kid=7 and sid<100 Order By sid
sidDESCRUNITSYMBOLT1T2T3T4T5T6T7T8T9T10REMARK
0Nominal Capacity [°øĪ¿ë·®]m©øV_nom3053.6303053.6303053.6303053.6308181.2303053.630 
1Storage Capacity [ÀúÀå¿ë·®]m©øV_sto2752.1702752.1702752.1702752.1708143.0103053.630 
2Vapor Space Capacitym©øV_hil301.460301.460301.460301.46038.220 
3Storage Capacity Ratio%R_Sto90.13090.13090.13090.13099.530100.000 
4Vapor Space Ratio%R_vapor9.8709.8709.8709.8700.470 
10A. WEIGHT SUMMARY   
11SHELL PLATETonWs373.962319.336318.935318.935625.870364.479 
12UPPER COLUMN (PLATE)TonWuc13.79713.81913.81913.81932.29013.783 
13LOWER COLUMN (PIPE)TonWc22.95222.93422.93422.93456.39933.093 
14CROSS BRACE (PIPE)TonWb15.56115.54715.54715.54738.77820.497 
15ROOF PLATFORM & STAIRWAYTonWr20.65720.64120.64120.64150.75929.784 
16WATER SPRAY AND ATTACHMENTTonWsp18.36218.34718.34718.34745.11926.474 
17MANHOLE & NOZZLETonWn16.30016.30016.30016.30019.50016.300 
18INTERNAL LADDER & ATTACHMENTTonWi12.86112.86112.86112.86115.38612.861 
19ANCHOR BOLT/NUTTonWa3.1803.1803.1803.1804.4523.180 
20COLUMN FIRE PROOFINGTonWin40.30040.30040.30040.30070.50040.300 
21BLANK 1TonW_1 
22BLANK 2TonW_2 
23BLANK 3TonW_3 
24BLANK 4TonW_4 
25BLANK 5TonW_5 
26Lower-Column O.DmmDcol914.400914.400914.400914.4001066.800914.400 
27Lower-Column ThicknessmmTcol14.00014.00014.00014.00016.00014.000 
28Cross-Brace O.DmmDbrace273.100273.100273.100273.100323.500273.100 
29Cross-Brace ThicknessmmTbrace12.70012.70012.70012.70015.60012.700 
30¡á EMPTY WEIGHT (1 Unit)TonWe537.930483.270482.860482.860959.050560.750We = W(1)+ .. +W(10)
31B. LOADING DATA   
32¡¡CONTENTS WEIGHT (at Operating)TonWc1480.6701786.1601720.1101640.2904885.810216.810Wc = Vsto * S.G
33HYDROSTATIC TEST WATER WEIGHTTonWt3053.6303053.6303053.6303053.6308181.2303053.630Wt = Vnom * 1.0
34¡¡1) VERTICAL LOAD   
35EMPTY WEIGHTTonWe537.930483.270482.860482.860959.050560.750We = W(1)+ .. +W(10)
36OPERATING WEIGHTTonWo2018.6002269.4302202.9702123.1505844.860777.560Wo = We + Wc
37HYDROSTATIC TEST WEIGHTTonWh3591.5603536.9003536.4903536.4909140.2803614.380Wh = We + Wt
38¡¡2) HORIZONTAL LOAD   
39SEISMIC FACTOR (CS=0.29 Fix) CS0.2900.2900.2900.2900.2900.290 
40SEISMIC LOAD (Base Shear) Vs = CS x WoTonVs585.390658.130638.860615.7101695.010225.490Vs = CS x Wo
41WIND LOAD (Base Shear)TonVw 

]
cdAry[3] = [TABLE 3.1) String cAry[][] = S_DETAIL, cAry.length = [36] cAry[0].length = [12]
query[2] = Select sid, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 From S_DETAIL Where kid=7 and sid<100 Order By sid
sidSYMBOLT1T2T3T4T5T6T7T8T9T10
1TNOT-3201(4)T-3205(3)T-3208(3)T-3213(3)TKKLH 2    
2CODEDIV. 2DIV. 2DIV. 2DIV. 2DIV. 2DIV. 1    
3CONTENTPropyleneButadieneCrude C4HP PetrochemicalMixed C4LH 2    
4SG0.5380.6490.6250.5960.60.071    
5MATLSA537-CL2SA537-CL2SA537-CL2SA537-CL2SA516-65SA553-TYPE1    
6DTEMP707070708787    
7Sd230.00230.00230.00230.00148.49178.20    
8Di180001800018000180002500018000    
9CA3.23.23.23.23.00    
10HT120001200012000120001550015500    
11HHLL145001450014500145002400018000    
12HLL141001410014100141002400018000    
13LLL230023002300230010001000    
14LLLL200020002000200010001000    
15Pi21.618.018.018.07.95    
16Pe1.0332271.0332271.0332271.0332271.051.05    
17MDMT-15-15-15-15-10-10    
18E1.01.01.01.011    
19TQTY4.04.04.04.011    
20CQTY101010101410    
21SQTY9999109    
22CACB3.0 / 3.03.0 / 3.03.0 / 3.03.0 / 3.03.0 / 3.03.0 / 3.0    
23L64.064.064.064.06464    
24tdReq46.2639.6339.5639.4841.6212.70    
25twReq36.6830.8930.8930.8937.156.96    
26tmReq33.5228.2628.2628.2634.386.96    
27teReq16.0518.3618.3918.4230.9844.63    
28tTops45.539.039.039.037.045.5    
29tMids47.040.540.040.042.045.5    
30tBtms47.040.540.540.542.545.5    
31tUsed47.040.540.540.542.545.5    
32MSGOKOKOKOKOKOK    
33tdCyo89.5376.2176.0775.9180.3725.44    
34ttCyt76.765.0965.0965.0977.4213.93    
35tCyli90.577.077.077.081.526.5    

]
cdAry[4] = [[cAry, dAry] TANK STRENGTH CALCULATION SHEET, uid= [0], units= [kg/cm©÷]
11TANK NO. (Max. 40 Char.)TNO =T-3201(4)
0
T-3205(3)
0
T-3208(3)
0
T-3213(3)
0
TKK
0
LH 2
0
22VESSEL DESIGN CODE (ASME SEC. VIII, Div. 1,2)CODE =DIV. 2
2
DIV. 2
2
DIV. 2
2
DIV. 2
2
DIV. 2
2
DIV. 1
1
33STORAGE LIQUID NAMECONTENT =Propylene
0
Butadiene
0
Crude C4
0
HP Petrochemical
0
Mixed C4
0
LH 2
0
44DESIGN SPECIFIC GRAVITYSG =0.538
0.538
0.649
0.649
0.625
0.625
0.596
0.596
0.6
0.6
0.071
0.071
55MATERIAL OF SHELL PLATEMATL =SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA537-CL2
0
SA516-65
0
SA553-TYPE1
0
66DESIGN TEMPERATURE (Max.)DTEMP =¡É70
70
70
70
70
70
70
70
87
87
87
87
77ALLOWABLE STRESS at Deisin(Operating)Sd =MPa230.00
230
230.00
230
230.00
230
230.00
230
148.49
148.49
178.20
178.2
88TANK INSIDE DIAMETERDi =mm18000
18000
18000
18000
18000
18000
18000
18000
25000
25000
18000
18000
99CORROSION ALLOWANCE (SHELL)CA =mm3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.0
3
0
0
1010TANK EQUATOR LEVEL (FROM GROUND)HT =mm12000
12000
12000
12000
12000
12000
12000
12000
15500
15500
15500
15500
1111(SHELL µÎ²²°è»ê ³ôÀÌ) HIGH HIGH LIQUID LEVELHHLL =mm14500
14500
14500
14500
14500
14500
14500
14500
24000
24000
18000
18000
1212(Storage ¿ë·®°è»ê ¾×³ôÀÌ) HIGH LIQUID LEVELHLL =mm14100
14100
14100
14100
14100
14100
14100
14100
24000
24000
18000
18000
1313LOW LIQUID LEVELLLL =mm2300
2300
2300
2300
2300
2300
2300
2300
1000
1000
1000
1000
1414LOW LOW LIQUID LEVELLLLL =mm2000
2000
2000
2000
2000
2000
2000
2000
1000
1000
1000
1000
1515DESIGN INTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pi =
kg/cm©÷
kPa
21.6
2118.2364
18.0
1765.197
18.0
1765.197
18.0
1765.197
7.9
774.72535
5
490.3325
1616DESIGN EXTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pe =
kg/cm©÷
kPa
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.05
102.969825
1.05
102.969825
1717MIN.DESIGN METAL TEMPERATUREMDMT =¡É-15
-15
-15
-15
-15
-15
-15
-15
-10
-10
-10
-10
1818SHELL JOINT EFFICIENCYE =1.0
1
1.0
1
1.0
1
1.0
1
1
1
1
1
1919TANK QUANTITY (ÅÊÅ©¼ö·® Á÷Á¢ÀÔ·Â)TQTY =Unit4.0
4
4.0
4
4.0
4
4.0
4
1
1
1
1
2020COLUMN QUANTITY (¼ö·®ÀÚµ¿°è»ê)CQTY =EA10
10
10
10
10
10
10
10
14
14
10
10
2121SHELL SEGMENT QUANTITY (¼ö·®ÀÚµ¿°è»ê)SQTY =EA9
9
9
9
9
9
9
9
10
10
9
9
2222CORROSION ALLOWANCE (Column/Brace)CACB =mm3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
2323Cylinderical Vessel Longitudinal Length
ex) Mounded Bullet Vessel(Cylinderical) Length
L =(m)64.0
64
64.0
64
64.0
64
64.0
64
64
64
64
64
2424Req'd Thickness under Operating Cond. (Pi+Ps)tdReq =mm46.26
46.26
39.63
39.63
39.56
39.56
39.48
39.48
41.62
41.62
12.70
12.7
2525Req'd Thickness under Hydro-test (MAWP) (Pt)twReq =mm36.68
36.68
30.89
30.89
30.89
30.89
30.89
30.89
37.15
37.15
6.96
6.96
2626Req'd Thickness under Hydro-test (MAP) (Pt)tmReq =mm33.52
33.52
28.26
28.26
28.26
28.26
28.26
28.26
34.38
34.38
6.96
6.96
2727Req'd Thickness under External Pressue (Pe)teReq =mm16.05
16.05
18.36
18.36
18.39
18.39
18.42
18.42
30.98
30.98
44.63
44.63
2828¡¡¡¡¡¡¡Ü Top Shell Used ThicknesstTops =mm45.5
45.5
39.0
39
39.0
39
39.0
39
37.0
37
45.5
45.5
2929¡¡¡¡¡¡¡Ü Equator Used ThicknesstMids =mm47.0
47
40.5
40.5
40.0
40
40.0
40
42.0
42
45.5
45.5
3030¡¡¡¡¡¡¡Ü Bottom Shell Used ThicknesstBtms =mm47.0
47
40.5
40.5
40.5
40.5
40.5
40.5
42.5
42.5
45.5
45.5
3131¡¡¡¡¡¡¡Ü Max. (Spherical) Used ThicknesstUsed =mm47.0
47
40.5
40.5
40.5
40.5
40.5
40.5
42.5
42.5
45.5
45.5
3232If (tUsed ¡Â 64mm) then Accetable
Else (tUsed>64mm) Sd ReSelect
MSG =OK
0
OK
0
OK
0
OK
0
OK
0
OK
0
3333(¡Ü Cylinder) Req'd Thickness under Oper. (Pi+Ps)tdCyo =mm89.53
89.53
76.21
76.21
76.07
76.07
75.91
75.91
80.37
80.37
25.44
25.44
3434(¡Ü Cylinder) Req'd Thickness under Hydrotest(Pt)ttCyt =mm76.7
76.7
65.09
65.09
65.09
65.09
65.09
65.09
77.42
77.42
13.93
13.93
3535¡¡¡¡¡¡¡Ü Max. (Cylinder) Used ThicknesstCyli =mm90.5
90.5
77.0
77
77.0
77
77.0
77
81.5
81.5
26.5
26.5

cAry[0].length=[12][12] END OF MYSQL_SPH_DATAREAD(), cAry.length = [36] dAry.length = [36]
]
cdAry[5] = []
rv=[sphereColumnSTD.jsp sph.WLEDING_LENGTH_CALC();

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09946.02827.48482.318,22716,96546.02827.48482.338227.3024681.9980.9468.352
#2, 0182746.02827.47671216,455©ª8171.830,6845,796
#3, 3184546.02827.49996.5429,145©ª12727.939,98646.02827.4920047286.3729145.51655.180.713
#4, 414.559.546.08120.72277.7636,676©ª15509.348,72413,66646.02436.29424.866112.7036676.21796.11101.568
#5, 561120.547.02827.49679.720190,604©ª18000191,63747.02827.49679.7209530.20190604.09135.7516.612
#6, 814.513547.08120.72277.7637,474©ª15509.348,72413,66647.02436.29424.866245.5937473.51796.11101.568
#7, 91815347.02827.49996.5429,779©ª12727.939,98647.02827.4900047444.7629779.11655.180.713
#8, 101817147.52827.47671216,991©ª8171.830,6845,79647.52827.48482.338495.5825486.8980.9468.352
#9, 10918047.52827.48482.318,49616,965
Total Quantity and Shell Weight46373,847kg272.7 (m)230.6 (m)46373846.9180001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09939.02827.48482.316,97516,96539.02827.48482.336975.3220926.0980.9468.352
#2, 0182739.02827.47671213,951©ª8171.830,6845,796
#3, 3184539.02827.49996.5424,710©ª12727.939,98639.02827.4920046177.5724710.31655.180.713
#4, 414.559.539.08120.72277.7631,095©ª15509.348,72413,66639.02436.29424.865182.5131095.01796.11101.568
#5, 561120.540.02827.49679.720162,216©ª18000191,63740.02827.49679.7208110.81162216.29135.7516.612
#6, 814.513540.58120.72277.7632,291©ª15509.348,72413,66640.52436.29424.865381.8332291.01796.11101.568
#7, 91815340.52827.49996.5425,661©ª12727.939,98640.52827.4900046415.1725660.71655.180.713
#8, 101817140.52827.47671214,487©ª8171.830,6845,79640.52827.48482.337243.6021730.8980.9468.352
#9, 10918040.52827.48482.317,24416,965
Total Quantity and Shell Weight46318,630kg272.7 (m)230.6 (m)46318629.9180001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09939.02827.48482.316,97516,96539.02827.48482.336975.3220926.0980.9468.352
#2, 0182739.02827.47671213,951©ª8171.830,6845,796
#3, 3184539.02827.49996.5424,710©ª12727.939,98639.02827.4920046177.5724710.31655.180.713
#4, 414.559.539.08120.72277.7631,095©ª15509.348,72413,66639.02436.29424.865182.5131095.01796.11101.568
#5, 561120.540.02827.49679.720162,216©ª18000191,63740.02827.49679.7208110.81162216.29135.7516.612
#6, 814.513540.08120.72277.7631,892©ª15509.348,72413,66640.02436.29424.865315.3931892.41796.11101.568
#7, 91815340.52827.49996.5425,661©ª12727.939,98640.52827.4900046415.1725660.71655.180.713
#8, 101817140.52827.47671214,487©ª8171.830,6845,79640.52827.48482.337243.6021730.8980.9468.352
#9, 10918040.52827.48482.317,24416,965
Total Quantity and Shell Weight46318,231kg272.7 (m)230.6 (m)46318231.3180001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09939.02827.48482.316,97516,96539.02827.48482.336975.3220926.0980.9468.352
#2, 0182739.02827.47671213,951©ª8171.830,6845,796
#3, 3184539.02827.49996.5424,710©ª12727.939,98639.02827.4920046177.5724710.31655.180.713
#4, 414.559.539.08120.72277.7631,095©ª15509.348,72413,66639.02436.29424.865182.5131095.01796.11101.568
#5, 561120.540.02827.49679.720162,216©ª18000191,63740.02827.49679.7208110.81162216.29135.7516.612
#6, 814.513540.08120.72277.7631,892©ª15509.348,72413,66640.02436.29424.865315.3931892.41796.11101.568
#7, 91815340.52827.49996.5425,661©ª12727.939,98640.52827.4900046415.1725660.71655.180.713
#8, 101817140.52827.47671214,487©ª8171.830,6845,79640.52827.48482.337243.6021730.8980.9468.352
#9, 10918040.52827.48482.317,24416,965
Total Quantity and Shell Weight46318,231kg272.7 (m)230.6 (m)46318231.3180001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 25,000 (m), Material SA516-65, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 06.46.437.02792.58377.616,45516,75537.02792.58377.636455.2519365.8695.366.675
#2, 012.819.237.02792.57943.1212,910©ª8221.731,7735,045
#3, 312.83237.02792.510404.9423,963©ª1324841,62037.02792.59567.745990.8223963.31204.182.504
#4, 49.541.537.08673.72072.6628,256©ª16565.552,04212,43537.01858.68726.693139.5428255.91238.6597.283
#5, 545.58739.52801.19926.628212,062©ª24965.778,432277,94439.52801.19970287573.64212061.88707.75683.905
#6, 651.5138.542.0280511297.428259,364©ª25000314,59642.0280511297.4289263.00259364.110016.15786.667
#7, 99.514842.08673.72072.6632,074©ª16565.552,04212,43542.01858.68726.693563.8032074.21238.6597.283
#8, 1012.8160.842.52792.510404.9427,525©ª1324841,62042.52792.59367.746881.3527525.41204.182.504
#9, 1112.8173.642.52792.57943.1214,830©ª8221.731,7735,04542.52792.58377.637414.8222244.4695.366.675
#10, 116.418042.52792.58377.617,41516,755
Total Quantity and Shell Weight82624,855kg362.8 (m)627.5 (m)88624854.9250001963.496
Total Site Weleding length (m)990.3 (m)
myEQid[tid] = [ 5 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA553-TYPE1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09927.02827.48482.314,82916,96527.02827.48482.334829.0714487.2980.9468.352
#2, 0182727.02827.4767129,658©ª8171.830,6845,796
#3, 3184527.02827.49996.5417,107©ª12727.939,98627.02827.4920044276.7817107.11655.180.713
#4, 414.559.527.08120.72277.7621,527©ª15509.348,72413,66627.02436.29424.863587.8921527.31796.11101.568
#5, 561120.527.02827.49679.720109,496©ª18000191,63727.02827.49679.7205474.80109495.99135.7516.612
#6, 814.513527.08120.72277.7621,527©ª15509.348,72413,66627.02436.29424.863587.8921527.31796.11101.568
#7, 91815327.02827.49996.5417,107©ª12727.939,98627.02827.4900044276.7817107.11655.180.713
#8, 101817127.02827.4767129,658©ª8171.830,6845,79627.02827.48482.334829.0714487.2980.9468.352
#9, 10918027.02827.48482.314,82916,965
Total Quantity and Shell Weight46215,739kg272.7 (m)230.6 (m)46215739.3180001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes
1. CAPACITY CALCULATION
ÅÊÅ© °øĪ ¹× ÀúÀå¿ë·®ÇÏÁßÁ¶°Ç (Loading Data)
NoTNOLiquid
Name
SGDDLLVnomVstoVhilvRatioÅÊÅ©
Ç¥¸éÀû
4.Empty
Steel
5,ÀúÀå
¾×ü
6.¿îÀü
Áß·®
7.¼ö¾Ð
¼öÁß·®
8.¼ö¾Ð
Å×½ºÆ®Áß·®
mmmm£í©ø£í©ø£í©ø(%)m2Ton
1T-3201(4)Propylene0.53818,00014,5003053.632752.17301.469.9 (%)1017.88403.661480.671884.333053.633457.29
2T-3205(3)Butadiene0.64918,00014,5003053.632752.17301.469.9 (%)1017.88348.061786.162134.223053.633401.69
3T-3208(3)Crude C40.62518,00014,5003053.632752.17301.469.9 (%)1017.88347.671720.12067.773053.633401.29
4T-3213(3)HP Petrochemical0.59618,00014,5003053.632752.17301.469.9 (%)1017.88347.671640.291987.963053.633401.29
5TKKMixed C40.625,00024,0008181.238143.0138.220.5 (%)1963.5721.674885.815607.488181.238902.9
6LH 2LH 20.07118,00018,0003053.633053.6300 (%)1017.88244.4216.81461.213053.633298.03

°ø°£¿ëÀûºñ(%) = °ø°£¿ëÀû / °øĪ¿ë·® * 100
Ratio of vapour Space, vRatio = Vhil / Vnom * 100(%)
uAry[1][3] = [ 0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ | ]
uAry[1][3].substring(0,1).trim() = [0]
uid = [0]
cAry.length = [36] cAry[0].length = [12]
sph.MYANG_SET();
sph.CODE_CALC( );
MATERIAL LIST
No.F0F1F2F3F4F5F6F7F8F9F10F11F12F13F14F15F16F17F18F19F20F21F22F23F24F25F26F27F28F29F30F31F32F33F34Cylindrical Shell
No.TNOCODECONTENTSGDiCAHTHHLLPiPeMDMTDTEMPCQTYMSGMATLSdgtReq
Used
Thk
6Roark
tRoark
1_ASME
tASME
td_2
tTest
td_3
tMAWP
td_5
tMAP
td_5
tVacuum
Shell
Qty
Net
Weight
Ton
Column
Qty
Tank Height
BASE to EQ. Line
(mm)
Upp. Colume
Height(mm)
Low. Colume
Height(mm)
Column
PCD
mm
BRACE
ºÎÂø°¢µµ
(o)deg.
Column
Size
Shell
°¢µµ
ºÐÇÒ¼ö
Spherical
Top ~ Btm
µÎ²²(mm)
Shell matl id, Sd
MPa
Cyl.
td
(mm)
Cyl.
tt
(mm)
Cyl.
tt(MAWP)
(mm)
Cyl.
tt(MAP)
(mm)
1T-3201(4)DIV. 2Propylene0.538180003.2120001450021.61.033227-157010OKSA537-CL2230.0046 ~ 47.546.1646.2632.2932.9135.5426.6946373.84710 EA12000370083001760033.2354©ª 863.6x9.65t1246 ~ 47.5matid=6, Sd= 230.0 MPa, t ¡Â 64t89.5264.7165.9471.23
2T-3205(3)DIV. 2Butadiene0.649180003.2120001450018.01.033227-157010OKSA537-CL2230.0039 ~ 40.539.5639.6327.2427.8830.4426.6946318.63010 EA12000370083001760033.2354©ª 863.6x9.65t1239 ~ 40.5matid=6, Sd= 230.0 MPa, t ¡Â 64t76.2154.5655.8460.99
3T-3208(3)DIV. 2Crude C40.625180003.2120001450018.01.033227-157010OKSA537-CL2230.0039 ~ 40.539.4939.5627.2427.7930.4426.6946318.23110 EA12000370083001760033.2354©ª 863.6x9.65t1239 ~ 40.5matid=6, Sd= 230.0 MPa, t ¡Â 64t76.0754.5655.6760.99
4T-3213(3)DIV. 2HP Petrochemical0.596180003.2120001450018.01.033227-157010OKSA537-CL2230.0039 ~ 40.539.4139.4827.2427.8430.4426.6946318.23110 EA12000370083001760033.2354©ª 863.6x9.65t1239 ~ 40.5matid=6, Sd= 230.0 MPa, t ¡Â 64t75.9154.5655.7760.99
5TKKDIV. 2Mixed C40.6250003.015500240007.91.05-108714OKSA516-65148.4937 ~ 42.541.5641.6235.5536.2639.3835.9688624.85514 EA155004770107302450026.9345©ª 1066.8x15.09t1337 ~ 42.5matid=2, Sd= 148.486 MPa, 80.3671.1972.6378.89
6LH 2DIV. 1LH 20.071180000155001800051.05-108710OKSA553-TYPE1178.2027 ~ 2712.7012.707.2213.8213.9625.9146215.73910 EA12000372082801758033.2689©ª 863.6x9.65t1227 ~ 27matid=17, Sd= 178.2 MPa, W525.4414.4527.6527.94


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3201(4)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(1/6) Tank No. : [T-3201(4)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.538, Pg = 2118.236 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.044.6644.7530.8933.5226.6946.0#127.0oSA537-CL246.02827.48482.338,22724,682typ=0
9.0o9.0o17889.244.6644.7530.9033.5326.6946.0typ=4
18.0o27.0o17019.144.6644.7531.0033.6326.6946.0typ=4
218.0o45.0o15364.044.6644.7531.1833.8226.6946.0#218.0oSA537-CL246.02827.49200.047,28629,145typ=3
314.5o59.5o13567.844.7544.8531.3934.0226.6946.0#314.5oSA537-CL246.02436.29424.866,11336,676typ=3
430.5o90.0o9000.045.0945.3231.9034.5326.6947.0#461.0oSA537-CL247.02827.49681.9209,530190,604typ=1
30.5o120.5o4432.245.7045.8032.4135.0526.6947.0typ=4
514.5o135.0o2636.045.8845.9832.6135.2526.6947.0#514.5oSA537-CL247.02436.29424.866,24637,474typ=3
618.0o153.0o980.946.0546.1632.8035.4326.6947.0#618.0oSA537-CL247.02827.49000.047,44529,779typ=3
718.0o171.0o110.846.1446.2532.9035.5326.6947.5#727.0oSA537-CL247.52827.48482.338,49625,487typ=2
9.0o180.0o0.046.1646.2632.9135.5426.6947.5typ=4
Sub-Total46Sht373,847kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO102]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3205(3)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(2/6) Tank No. : [T-3205(3)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.649, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.037.7537.8225.8528.4226.6939.0#127.0oSA537-CL239.02827.48482.336,97520,926typ=0
9.0o9.0o17889.237.7537.8225.8728.4426.6939.0typ=4
18.0o27.0o17019.137.7537.8225.9628.5326.6939.0typ=4
218.0o45.0o15364.037.7537.8226.1528.7226.6939.0#218.0oSA537-CL239.02827.49200.046,17824,710typ=3
314.5o59.5o13567.837.8737.9326.3528.9226.6939.0#314.5oSA537-CL239.02436.29424.865,18331,095typ=3
430.5o90.0o9000.038.3238.5026.8729.4326.6940.0#461.0oSA537-CL240.02827.49681.9208,111162,216typ=1
30.5o120.5o4432.239.0139.0727.3829.9526.6940.0typ=4
514.5o135.0o2636.039.2339.3027.5830.1526.6940.5#514.5oSA537-CL240.52436.29424.865,38232,291typ=3
618.0o153.0o980.939.4339.5127.7730.3326.6940.5#618.0oSA537-CL240.52827.49000.046,41525,661typ=3
718.0o171.0o110.839.5439.6227.8630.4326.6940.5#727.0oSA537-CL240.52827.48482.337,24421,731typ=2
9.0o180.0o0.039.5639.6327.8830.4426.6940.5typ=4
Sub-Total46Sht318,630kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO103]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3208(3)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(3/6) Tank No. : [T-3208(3)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.625, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.037.7537.8225.7728.4226.6939.0#127.0oSA537-CL239.02827.48482.336,97520,926typ=0
9.0o9.0o17889.237.7537.8225.7828.4426.6939.0typ=4
18.0o27.0o17019.137.7537.8225.8828.5326.6939.0typ=4
218.0o45.0o15364.037.7537.8226.0728.7226.6939.0#218.0oSA537-CL239.02827.49200.046,17824,710typ=3
314.5o59.5o13567.837.8637.9326.2728.9226.6939.0#314.5oSA537-CL239.02436.29424.865,18331,095typ=3
430.5o90.0o9000.038.3038.4826.7829.4326.6940.0#461.0oSA537-CL240.02827.49681.9208,111162,216typ=1
30.5o120.5o4432.238.9639.0327.2929.9526.6940.0typ=4
514.5o135.0o2636.039.1739.2427.5030.1526.6940.0#514.5oSA537-CL240.02436.29424.865,31531,892typ=3
618.0o153.0o980.939.3739.4427.6830.3326.6940.5#618.0oSA537-CL240.52827.49000.046,41525,661typ=3
718.0o171.0o110.839.4839.5527.7830.4326.6940.5#727.0oSA537-CL240.52827.48482.337,24421,731typ=2
9.0o180.0o0.039.4939.5627.7930.4426.6940.5typ=4
Sub-Total46Sht318,231kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO104]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3213(3)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(4/6) Tank No. : [T-3213(3)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.596, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.037.7537.8225.8228.4226.6939.0#127.0oSA537-CL239.02827.48482.336,97520,926typ=0
9.0o9.0o17889.237.7537.8225.8328.4426.6939.0typ=4
18.0o27.0o17019.137.7537.8225.9328.5326.6939.0typ=4
218.0o45.0o15364.037.7537.8226.1228.7226.6939.0#218.0oSA537-CL239.02827.49200.046,17824,710typ=3
314.5o59.5o13567.837.8637.9226.3228.9226.6939.0#314.5oSA537-CL239.02436.29424.865,18331,095typ=3
430.5o90.0o9000.038.2738.4526.8329.4326.6940.0#461.0oSA537-CL240.02827.49681.9208,111162,216typ=1
30.5o120.5o4432.238.9038.9727.3429.9526.6940.0typ=4
514.5o135.0o2636.039.1139.1827.5430.1526.6940.0#514.5oSA537-CL240.02436.29424.865,31531,892typ=3
618.0o153.0o980.939.3039.3727.7330.3326.6940.5#618.0oSA537-CL240.52827.49000.046,41525,661typ=3
718.0o171.0o110.839.4039.4727.8330.4326.6940.5#727.0oSA537-CL240.52827.48482.337,24421,731typ=2
9.0o180.0o0.039.4139.4827.8430.4426.6940.5typ=4
Sub-Total46Sht318,231kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO105]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : TKKÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(5/6) Tank No. : [TKK] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 25000 mm, DLL = 24000 mm, CA = 3 mm, SG = 0.6, Pg = 774.725 kPa, Pe = 102.97 kPa
, SA516-65 matid=2, Sd= 148.486 MPa, St= 228.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o25000.035.6235.6629.5232.6435.9637.0#119.2oSA516-6537.02792.58377.636,45519,366typ=0
6.4o6.4o24922.135.6235.6629.5432.6735.9637.0typ=4
12.8o19.2o24304.735.6235.6629.7132.8335.9637.0typ=4
212.8o32.0o23100.635.8435.8830.0333.1635.9637.0#212.8oSA516-6537.02792.59567.745,99123,963typ=3
39.5o41.5o21862.036.1536.1930.3733.4935.9637.0#39.5oSA516-6537.01858.68726.693,14028,256typ=3
445.5o87.0o13154.238.4538.3532.7235.8435.9639.5#445.5oSA516-6539.52801.19970.0287,574212,062typ=3
53.0o90.0o12500.038.6538.5232.8936.0135.9642.0#551.5oSA516-6542.02805.011335.6289,263259,364typ=1
48.5o138.5o3138.040.7940.8435.4138.5435.9642.0typ=4
69.5o148.0o1899.441.0941.1535.7538.8735.9642.0#69.5oSA516-6542.01858.68726.693,56432,074typ=3
712.8o160.8o695.341.3941.4536.0739.2035.9642.5#712.8oSA516-6542.52792.59367.746,88127,525typ=3
812.8o173.6o77.941.5441.6036.2439.3635.9642.5#819.2oSA516-6542.52792.58377.637,41522,244typ=2
6.4o180.0o0.041.5641.6236.2639.3835.9642.5typ=4
Sub-Total88Sht624,855kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO106]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : LH 2ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(6/6) Tank No. : [LH 2] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 18000 mm, DLL = 18000 mm, CA = 0 mm, SG = 0.071, Pg = 490.333 kPa, Pe = 102.97 kPa
, SA553-TYPE1 matid=17, Sd= 178.2 MPa, St= 526.5 MPa, Thick Limit : W5
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.012.3812.3812.3112.4625.9127.0#127.0oSA553-TYPE127.02827.48482.334,82914,487typ=0
9.0o9.0o17889.212.3812.3912.3212.4725.9127.0typ=4
18.0o27.0o17019.112.4012.4012.3912.5425.9127.0typ=4
218.0o45.0o15364.012.4312.4312.5312.6825.9127.0#218.0oSA553-TYPE127.02827.49200.044,27717,107typ=3
314.5o59.5o13567.812.4612.4612.6812.8325.9127.0#314.5oSA553-TYPE127.02436.29424.863,58821,527typ=3
430.5o90.0o9000.012.5012.5413.0713.2125.9127.0#461.0oSA553-TYPE127.02827.49681.9205,475109,496typ=1
30.5o120.5o4432.212.6212.6213.4513.5925.9127.0typ=4
514.5o135.0o2636.012.6512.6613.6013.7425.9127.0#514.5oSA553-TYPE127.02436.29424.863,58821,527typ=3
618.0o153.0o980.912.6812.6813.7413.8825.9127.0#618.0oSA553-TYPE127.02827.49000.044,27717,107typ=3
718.0o171.0o110.812.7012.7013.8113.9625.9127.0#727.0oSA553-TYPE127.02827.48482.334,82914,487typ=2
9.0o180.0o0.012.7012.7013.8213.9625.9127.0typ=4
Sub-Total46Sht215,739kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO107]

CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. T-3201(4)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.538, Pg= 21.6 kg/cm2(=2118.236 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2727 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4002118.22118.244.6644.7546.00.7+0.552.18162.34511.0¥òeq = 222.7871 / 12
P19.0o9.0o17895.6002118.244.6644.7546.00.7+0.552.18162.34511.0¥òeq = 222.7872 / 12
P218.0o27.0o17025.1002118.244.6644.7546.00.7+0.552.18162.34511.0¥òeq = 222.7873 / 12
P318.0o45.0o15369.4002118.244.6644.7546.00.7+0.552.18162.34511.0¥òeq = 222.7874 / 12
P414.5o59.5o13572.7930.54.92123.144.7544.8546.00.7+0.452.17672.34511.0¥òeq = 223.3055 / 12
P530.5o90.0o9003.25500.029.02147.245.0945.3247.00.7+0.482.17802.37051.0¥òeq = 225.1176 / 12
30.5o120.5o4433.710069.553.12171.345.7045.8047.00.7+0.502.17932.39601.0¥òeq = 223.1738 / 12
P614.5o135.0o2637.011866.262.62180.845.8845.9847.00.7+0.322.16982.39601.0¥òeq = 224.1399 / 12
P718.0o153.0o981.313521.971.32189.546.0546.1647.00.7+0.142.16112.39601.0¥òeq = 225.03310 / 12
P818.0o171.0o110.814392.475.92194.146.1446.2547.50.7+0.552.18202.42141.0¥òeq = 222.9611 / 12
P99.0o180.0o014503.276.52194.746.1646.2647.50.7+0.542.18142.42142.16112.34511.0¥òeq = 223.01912 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =2.1182MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =2.1611MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.3451MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. T-3201(4)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.538, Pg= 21.6 kg/cm2(=2118.236 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2701.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002701.42701.430.2730.8933.5246.02.18162.3451¥òeq = 381.2761 / 12
P19.0o9.0o17889.2110.81.12702.530.2930.9033.5346.02.18162.3451¥òeq = 381.4722 / 12
P218.0o27.0o17019.1980.99.62711.030.3831.0033.6346.02.18162.3451¥òeq = 375.5013 / 12
P318.0o45.0o15364.02636.025.92727.330.5731.1833.8246.02.18162.3451¥òeq = 378.3854 / 12
P414.5o59.5o13567.84432.243.52744.930.7731.3934.0246.02.17672.3451¥òeq = 381.5415 / 12
P530.5o90.0o9000.09000.088.32789.731.2831.9034.5347.02.17802.3705¥òeq = 381.2886 / 12
30.5o120.5o4432.213567.8133.12834.531.8032.4135.0547.02.17932.3960¥òeq = 382.3548 / 12
P614.5o135.0o2636.015364.0150.72852.132.0032.6135.2547.02.16982.3960¥òeq = 378.1659 / 12
P718.0o153.0o980.917019.1166.92868.332.1832.8035.4347.02.16112.3960¥òeq = 380.85310 / 12
P818.0o171.0o110.817889.2175.42876.832.2832.9035.5347.52.18202.4214¥òeq = 382.27211 / 12
P99.0o180.0o018000.0176.52877.932.2932.9135.5447.52.18142.4214¥òeq = 382.45312 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =2.1182at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.647827.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.1611at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.701427.5466
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.3451at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.931429.8920


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. T-3201(4)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.538, Pg= 21.6 kg/cm2(=2118.236 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2701.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00042.8046.02.18162.3451335.11681 / 12
P19.0o9.0o17895.60017889.2110.81.142.8046.02.18162.3451335.11682 / 12
P218.0o27.0o17025.10017019.1980.99.642.8046.02.18162.3451335.11683 / 12
P318.0o45.0o15369.40015364.02636.025.942.8046.02.18162.3451335.11684 / 12
P414.5o59.5o13572.7930.54.913567.84432.243.542.8046.02.17672.3451335.11685 / 12
P530.5o90.0o9003.25500.029.09000.09000.088.343.3046.52.17802.3705342.95446 / 12
30.5o120.5o4433.710069.553.14432.213567.8133.143.8047.02.17932.3960350.88188 / 12
P614.5o135.0o2637.011866.262.62636.015364.0150.743.8047.02.16982.3960350.88189 / 12
P718.0o153.0o981.313521.971.3980.917019.1166.943.8047.02.16112.3960350.881810 / 12
P818.0o171.0o110.814392.475.9110.817889.2175.444.3047.52.18202.4214358.898911 / 12
P99.0o180.0o014503.276.5018000.0176.544.3047.52.18142.4214358.898912 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =2.1182at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.647827.0000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.1611at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.701427.5466
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.3451at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.931429.8920
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =335.11683.4172CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=335.1168 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. T-3201(4)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.538, Pg= 21.6 kg/cm2(=2118.236 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2701.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o44.6644.830.8933.5226.6946.00.7+0.55#127.046.02827.48482.338,22724,6821 / 12
P19.0o9.0o44.6644.830.9033.5326.6946.00.7+0.552 / 12
P218.0o27.0o44.6644.831.0033.6326.6946.00.7+0.553 / 12
P318.0o45.0o44.6644.831.1833.8226.6946.00.7+0.55#218.046.02827.49200.047,28629,1454 / 12
P414.5o59.5o44.7544.831.3934.0226.6946.00.7+0.45#314.546.02436.29424.866,11336,6765 / 12
P530.5o90.0o45.0945.331.9034.5326.6947.00.7+0.48#461.047.02827.49681.9209,530190,6046 / 12
30.5o120.5o45.7045.832.4135.0526.6947.00.7+0.508 / 12
P614.5o135.0o45.8846.032.6135.2526.6947.00.7+0.32#514.547.02436.29424.866,24637,4749 / 12
P718.0o153.0o46.0546.232.8035.4326.6947.00.7+0.14#618.047.02827.49000.047,44529,77910 / 12
P818.0o171.0o46.1446.232.9035.5326.6947.50.7+0.55#727.047.52827.48482.338,49625,48711 / 12
P99.0o180.0o46.1646.332.9135.5426.6947.50.7+0.5412 / 12
], CalcRpt[i][1]=[Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=2.1182 (kg/cm©÷), HT_UPPCOL = 36800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=245.004, N¥õ=16.25
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 18,242,393N1860206.4Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 2.118MPa21.6Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5380.538
10¡¡¥ã = Liquid Density¥ã = 5.275978E-6N/mm©ø538.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.13506degree0.42124radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99620500.9962050
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09151551.0915155
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.40888890.4088889
20¡¡C5 = 22 / ¥õC5 = 0.91153720.9115372
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.40888890.4088889
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9535.289N-mm97.233Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 245.004N-mm2.498Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 16.25N-mm0.166Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 9939.34N/mm10135.306Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9286.98N/mm9470.084Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 46.26mm4.626cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 45.09mm4.509cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 217.494MPa2217.822Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 849,765,374N-mm8665.195¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 324,224,980N-mm3306.175¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 426,990,293N-mm4354.089¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 152,224,595N-mm1552.259¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 213.605N/mm217.816Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 492,643,912N-mm5023.57¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 259,214,354N-mm2643.251¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 109,550,490mm©ø109.55¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,309,054,655mm©ø4309.055¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8304E-51.8304E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.173649E-36.173649E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1868.363mm186.836cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 54.558N/mm55.634Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 43,351,667N-mm442.064¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 21,783,355N-mm222.128¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 794,594mm©ø7945.942cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 209,695,208mm©ø209.695¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 263.902mm26.39cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 523.12mm52.312cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 264.559N/mm269.775Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 183.46N/mm187.077Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,387,266N141461.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 36517.328N3723.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7362.617mm736.262cm

piDeg=[24.13505563050982] piRad=[0.4212361859043923] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=2.1182 (kg/cm©÷), HT_UPPCOL = 36800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4002.11829535.299535.299535.29222.79 < OK 23044.6644.7546.00.093.140000
P1917895.6002.11829535.299535.299535.29222.79 < OK 23044.6644.7546.00.093.140000
P22717025.1002.11829535.299535.299535.29222.79 < OK 23044.6644.7546.00.093.140000
P34515369.4002.11829535.299535.299535.29222.79 < OK 23044.6644.7546.00.093.140000
P459.513572.7930.50.00492.12319535.2942.531.679577.829536.96223.30 < OK 23044.7544.8546.00.102.910.5970.0230.0990.004
P5909003.25500.00.02902.14729535.29245.0016.25213.6154.56264.56183.469939.349286.98225.12 < OK 23045.0945.3246.00.232.123.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.05312.17139535.29180.77297.549716.069832.83223.17 < OK 23045.7045.8047.00.102.972.5364.1740.4230.696
P61352637.011866.20.06262.18089535.29248.72314.939784.019850.22224.14 < OK 23045.8845.9847.00.102.553.494.4180.5820.736
P7153981.313521.90.07132.18959535.29309.27333.039844.569868.32225.03 < OK 23046.0546.1647.00.112.164.3394.6720.7230.779
P8171110.814392.40.07592.19419535.29340.50343.149875.799878.43222.96 < OK 23046.1446.2547.50.113.064.7774.8140.7960.802
P9180014503.20.07652.19479535.29344.46344.469879.759879.75223.02 < OK 23046.1646.2647.50.103.044.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.64775 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=661.949, N¥õ=132.39
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,570,867N3321304.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 2.118MPa21.6Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 9531.9N-mm97.198Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 10475.49N/mm10682.027Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 9194.48N/mm9375.76Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 26.23mm2.623cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 25.15mm2.515cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 367.166MPa3744.051Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,516,673,707N-mm15465.768¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 574,987,461N-mm5863.24¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 762,098,540N-mm7771.242¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 270,148,258N-mm2754.746¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 377.409N/mm384.85Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 879,504,648N-mm8968.451¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 462,534,503N-mm4716.539¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 78,067,574mm©ø78.068¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 95.768N/mm97.656Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 77,355,120N-mm788.803¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,869,418N-mm396.358¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 469.807N/mm479.07Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 326.424N/mm332.86Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,481,509N253043.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65968.346N6726.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.64775 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0002.11829531.99531.909531.90381.28 < OK 394.2524.1824.2125.00.033.290000
P1917889.2110.80.00112.11939531.97.342.449539.249534.34381.47 < OK 394.2524.1924.2225.00.033.240.0550.0180.0090.003
P22717019.1980.90.00962.12789531.965.3521.239597.259553.13375.50 < OK 394.2524.2924.3225.50.034.760.4940.160.0820.027
P34515364.02636.00.02592.14419531.9177.8254.849709.729586.74378.38 < OK 394.2524.4724.5125.50.044.021.3430.4140.2240.069
P459.513567.84432.20.04352.16179531.9304.0387.159835.939619.05381.54 < OK 394.2524.6824.7125.50.033.222.2970.6580.3830.11
P5909000.09000.00.08832.20659531.9661.95132.39377.4195.77469.81326.4210475.499194.48381.29 < OK 394.2525.1525.2226.00.073.29510.8330.167Column Attached Equator Plate
120.54432.213567.80.13312.25139531.9490.30707.1910022.2010239.09382.35 < OK 394.2525.7025.7326.50.033.023.7035.3420.6170.89
P61352636.015364.00.15072.26899531.9616.52739.5010148.4210271.40378.16 < OK 394.2525.9025.9327.00.034.084.6575.5860.7760.931
P7153980.917019.10.16692.28519531.9728.99773.1110260.8910305.01380.85 < OK 394.2526.0826.1227.00.043.405.5065.840.9180.973
P8171110.817889.20.17542.29369531.9787.00791.9010318.9010323.80382.27 < OK 394.2526.1826.2227.00.043.045.9455.9820.9910.997
P9180018000.00.17652.29479531.9794.34794.3410326.2410326.24382.45 < OK 394.2526.1926.2327.00.042.996611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 373846.904
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t46 ~ 47SHT46373.847456.093000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt47, t12¡¿3013¡¿3700SHT1012.94714.242000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86403.661487.202000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. T-3205(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2281.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4001765.21765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9611 / 12
P19.0o9.0o17895.6001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9612 / 12
P218.0o27.0o17025.1001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9613 / 12
P318.0o45.0o15369.4001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9614 / 12
P414.5o59.5o13572.7930.55.91771.137.8737.9339.00.7+0.371.81961.98901.0¥òeq = 222.7095 / 12
P530.5o90.0o9003.25500.035.01800.238.3238.5040.00.7+0.301.81592.01451.0¥òeq = 222.5496 / 12
30.5o120.5o4433.710069.564.11829.339.0139.0740.00.7+0.231.81232.03991.0¥òeq = 223.7948 / 12
P614.5o135.0o2637.011866.275.51840.739.2339.3040.50.7+0.501.82632.06541.0¥òeq = 222.1589 / 12
P718.0o153.0o981.313521.986.11851.339.4339.5140.50.7+0.291.81572.06541.0¥òeq = 223.42310 / 12
P818.0o171.0o110.814392.491.61856.839.5439.6240.50.7+0.181.81022.06541.0¥òeq = 224.0911 / 12
P99.0o180.0o014503.292.31857.539.5639.6340.50.7+0.171.80952.06541.80951.9891.0¥òeq = 224.17612 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.8095MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.9890MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. T-3205(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2261.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002261.92261.925.2225.8528.4239.01.82551.9890¥òeq = 378.2571 / 12
P19.0o9.0o17889.2110.81.12263.025.2325.8728.4439.01.82551.9890¥òeq = 378.492 / 12
P218.0o27.0o17019.1980.99.62271.525.3325.9628.5339.01.82551.9890¥òeq = 371.4783 / 12
P318.0o45.0o15364.02636.025.92287.825.5226.1528.7239.01.82551.9890¥òeq = 374.9044 / 12
P414.5o59.5o13567.84432.243.52305.425.7226.3528.9239.01.81961.9890¥òeq = 378.6585 / 12
P530.5o90.0o9000.09000.088.32350.226.2326.8729.4340.01.81592.0145¥òeq = 379.076 / 12
30.5o120.5o4432.213567.8133.12395.026.7427.3829.9540.01.81232.0399¥òeq = 379.7438 / 12
P614.5o135.0o2636.015364.0150.72412.626.9527.5830.1540.51.82632.0654¥òeq = 374.8739 / 12
P718.0o153.0o980.917019.1166.92428.827.1327.7730.3340.51.81572.0654¥òeq = 378.02310 / 12
P818.0o171.0o110.817889.2175.42437.327.2327.8630.4340.51.81022.0654¥òeq = 379.68911 / 12
P99.0o180.0o018000.0176.52438.427.2427.8830.4440.51.80952.0654¥òeq = 379.90212 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8095at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.261923.0650
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. T-3205(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2261.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00035.8039.01.82551.9890234.82651 / 12
P19.0o9.0o17895.60017889.2110.81.135.8039.01.82551.9890234.82652 / 12
P218.0o27.0o17025.10017019.1980.99.635.8039.01.82551.9890234.82653 / 12
P318.0o45.0o15369.40015364.02636.025.935.8039.01.82551.9890234.82654 / 12
P414.5o59.5o13572.7930.55.913567.84432.243.535.8039.01.81961.9890234.82655 / 12
P530.5o90.0o9003.25500.035.09000.09000.088.336.3039.51.81592.0145241.40506 / 12
30.5o120.5o4433.710069.564.14432.213567.8133.136.8040.01.81232.0399248.07368 / 12
P614.5o135.0o2637.011866.275.52636.015364.0150.737.3040.51.82632.0654254.83249 / 12
P718.0o153.0o981.313521.986.1980.917019.1166.937.3040.51.81572.0654254.832410 / 12
P818.0o171.0o110.814392.491.6110.817889.2175.437.3040.51.81022.0654254.832411 / 12
P99.0o180.0o014503.292.3018000.0176.537.3040.51.80952.0654254.832412 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8095at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.261923.0650
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =234.82652.3946CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=234.8265 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. T-3205(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2261.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8528.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8728.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9628.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1528.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8737.926.3528.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3238.526.8729.4326.6940.00.7+0.30#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o39.0139.127.3829.9526.6940.00.7+0.238 / 12
P614.5o135.0o39.2339.327.5830.1526.6940.50.7+0.50#514.540.52436.29424.865,38232,2919 / 12
P718.0o153.0o39.4339.527.7730.3326.6940.50.7+0.29#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.5439.627.8630.4326.6940.50.7+0.18#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.5639.627.8830.4426.6940.50.7+0.1712 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. T-3201(4)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.538, Pg= 21.6 kg/cm©÷(=2118.236 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2701.4 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o44.6644.830.8933.5226.6946.00.7+0.55#127.046.02827.48482.338,22724,6821 / 12
P19.0o9.0o44.6644.830.9033.5326.6946.00.7+0.552 / 12
P218.0o27.0o44.6644.831.0033.6326.6946.00.7+0.553 / 12
P318.0o45.0o44.6644.831.1833.8226.6946.00.7+0.55#218.046.02827.49200.047,28629,1454 / 12
P414.5o59.5o44.7544.831.3934.0226.6946.00.7+0.45#314.546.02436.29424.866,11336,6765 / 12
P530.5o90.0o45.0945.331.9034.5326.69TD90USED0.7+0.48#461.047.02827.49681.9209,530190,6046 / 12
30.5o120.5o45.7045.832.4135.0526.6947.00.7+0.508 / 12
P614.5o135.0o45.8846.032.6135.2526.6947.00.7+0.32#514.547.02436.29424.866,24637,4749 / 12
P718.0o153.0o46.0546.232.8035.4326.6947.00.7+0.14#618.047.02827.49000.047,44529,77910 / 12
P818.0o171.0o46.1446.232.9035.5326.6947.50.7+0.55#727.047.52827.48482.338,49625,48711 / 12
P99.0o180.0o46.1646.332.9135.5426.6947.50.7+0.5412 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=295.553, N¥õ=19.602
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,689,715N2109763.8Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6490.649
10¡¡¥ã = Liquid Density¥ã = 6.364516E-6N/mm©ø649.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.20483degree0.42245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99607510.9960751
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09448151.0944815
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41000000.4100000
20¡¡C5 = 22 / ¥õC5 = 0.90890930.9089093
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41000000.4100000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7946.224N-mm81.029Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 295.553N-mm3.014Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 19.602N-mm0.2Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8421.4N/mm8587.438Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7666.64N/mm7817.797Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.63mm3.963cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.32mm3.832cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 216.583MPa2208.532Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 963,766,321N-mm9827.681¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 366,545,705N-mm3737.726¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 484,273,514N-mm4938.216¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 172,155,062N-mm1755.493¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 240.952N/mm245.703Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 558,806,125N-mm5698.237¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 293,952,251N-mm2997.479¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 93,925,995mm©ø93.926¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,345,188,157mm©ø4345.188¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8569E-51.8569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.227031E-36.227031E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1873.604mm187.36cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 61.331N/mm62.54Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 49,152,614N-mm501.217¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 24,698,216N-mm251.852¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 801,429mm©ø8014.295cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 212,712,858mm©ø212.713¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 265.417mm26.542cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 526.095mm52.61cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 299.186N/mm305.085Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 207.688N/mm211.783Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,574,933N160598.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 41652.593N4247.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7382.624mm738.262cm

piDeg=[24.204834801458325] piRad=[0.42245406218675574] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P1917895.6001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P22717025.1001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P34515369.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P459.513572.7930.50.00591.77117946.2251.312.017997.537948.24222.71 < OK 23037.8737.9339.00.063.170.5970.0230.0990.004
P5909003.25500.00.03501.80027946.22295.5519.60240.9561.33299.19207.698421.407666.64222.55 < OK 23038.3238.5039.50.183.243.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.06411.82937946.22218.07358.938164.298305.15223.79 < OK 23039.0139.0740.00.062.702.5364.1740.4230.696
P61352637.011866.20.07551.84077946.22300.04379.918246.268326.13222.16 < OK 23039.2339.3040.50.073.413.494.4180.5820.736
P7153981.313521.90.08611.85137946.22373.08401.748319.318347.96223.42 < OK 23039.4339.5140.50.082.864.3394.6720.7230.779
P8171110.814392.40.09161.85687946.22410.76413.948356.988360.16224.09 < OK 23039.5439.6240.50.082.574.7774.8140.7960.802
P9180014503.20.09231.85757946.22415.52415.528361.758361.75224.18 < OK 23039.5639.6340.50.072.534.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=661.949, N¥õ=132.39
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,139,894N3277357.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7943.4N-mm81.0Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8883.26N/mm9058.404Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7612.2N/mm7762.284Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.19mm2.219cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.15mm2.115cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.589MPa3697.379Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,496,605,307N-mm15261.127¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 567,379,312N-mm5785.659¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 752,014,566N-mm7668.414¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 266,573,697N-mm2718.295¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 372.415N/mm379.758Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 867,867,174N-mm8849.782¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 456,414,316N-mm4654.131¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 65,250,509mm©ø65.251¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 94.501N/mm96.364Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 76,331,568N-mm778.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,355,103N-mm391.113¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 463.59N/mm472.73Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 322.105N/mm328.456Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,448,674N249695.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65095.462N6637.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0001.76527943.47943.407943.40378.26 < OK 394.2520.1520.1721.00.024.060000
P1917889.2110.80.00111.76637943.47.342.447950.747945.84378.49 < OK 394.2520.1620.1821.00.024.000.0550.0180.0090.003
P22717019.1980.90.00961.77487943.465.3521.238008.757964.63371.48 < OK 394.2520.2620.2821.50.025.780.4940.160.0820.027
P34515364.02636.00.02591.79117943.4177.8254.848121.227998.24374.90 < OK 394.2520.4420.4721.50.034.911.3430.4140.2240.069
P459.513567.84432.20.04351.80877943.4304.0387.158247.438030.55378.66 < OK 394.2520.6520.6721.50.023.952.2970.6580.3830.11
P5909000.09000.00.08831.85357943.4661.95132.39372.4294.50463.59322.108883.267612.20379.07 < OK 394.2521.1521.1822.00.033.85510.8330.167Column Attached Equator Plate
120.54432.213567.80.13311.89837943.4490.30707.198433.708650.59379.74 < OK 394.2521.6721.6922.50.023.683.7035.3420.6170.89
P61352636.015364.00.15071.91597943.4616.52739.508559.928682.90374.87 < OK 394.2521.8721.8923.00.024.914.6575.5860.7760.931
P7153980.917019.10.16691.93217943.4728.99773.118672.398716.51378.02 < OK 394.2522.0522.0823.00.034.125.5065.840.9180.973
P8171110.817889.20.17541.94067943.4787.00791.908730.408735.30379.69 < OK 394.2522.1522.1823.00.033.695.9455.9820.9910.997
P9180018000.00.17651.94177943.4794.34794.348737.748737.74379.90 < OK 394.2522.1622.1923.00.033.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 318629.945
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t39 ~ 40.5SHT46318.630388.728000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt40.5, t12¡¿3013¡¿3700SHT1012.56713.823000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86348.063419.418000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2281.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4001765.21765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9611 / 12
P19.0o9.0o17895.6001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9612 / 12
P218.0o27.0o17025.1001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9613 / 12
P318.0o45.0o15369.4001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9614 / 12
P414.5o59.5o13572.7930.55.71770.937.8637.9339.00.7+0.371.81981.98901.0¥òeq = 222.6825 / 12
P530.5o90.0o9003.25500.033.71798.938.3038.4840.00.7+0.321.81722.01451.0¥òeq = 222.386 / 12
30.5o120.5o4433.710069.561.71826.938.9639.0340.00.7+0.271.81472.03991.0¥òeq = 223.5038 / 12
P614.5o135.0o2637.011866.272.71837.939.1739.2440.00.7+0.061.80372.03991.0¥òeq = 224.8349 / 12
P718.0o153.0o981.313521.982.91848.139.3739.4440.50.7+0.361.81892.06541.0¥òeq = 223.03910 / 12
P818.0o171.0o110.814392.488.21853.439.4839.5540.50.7+0.251.81362.06541.0¥òeq = 223.68211 / 12
P99.0o180.0o014503.288.91854.139.4939.5640.50.7+0.241.81292.06541.80371.9891.0¥òeq = 223.76412 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.8037MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.9890MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002254.62254.625.2225.7728.4239.01.82551.9890¥òeq = 378.2571 / 12
P19.0o9.0o17889.2110.81.12255.725.2325.7828.4439.01.82551.9890¥òeq = 378.492 / 12
P218.0o27.0o17019.1980.99.62264.225.3325.8828.5339.01.82551.9890¥òeq = 371.4783 / 12
P318.0o45.0o15364.02636.025.92280.525.5226.0728.7239.01.82551.9890¥òeq = 374.9044 / 12
P414.5o59.5o13567.84432.243.52298.125.7226.2728.9239.01.81981.9890¥òeq = 378.6585 / 12
P530.5o90.0o9000.09000.088.32342.926.2326.7829.4340.01.81722.0145¥òeq = 379.076 / 12
30.5o120.5o4432.213567.8133.12387.726.7427.2929.9540.01.81472.0399¥òeq = 379.7438 / 12
P614.5o135.0o2636.015364.0150.72405.326.9527.5030.1540.01.80372.0399¥òeq = 374.8739 / 12
P718.0o153.0o980.917019.1166.92421.527.1327.6830.3340.51.81892.0654¥òeq = 378.02310 / 12
P818.0o171.0o110.817889.2175.42430.027.2327.7830.4340.51.81362.0654¥òeq = 379.68911 / 12
P99.0o180.0o018000.0176.52431.127.2427.7930.4440.51.81292.0654¥òeq = 379.90212 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8037at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.254622.9905
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00035.8039.01.82551.9890234.82651 / 12
P19.0o9.0o17895.60017889.2110.81.135.8039.01.82551.9890234.82652 / 12
P218.0o27.0o17025.10017019.1980.99.635.8039.01.82551.9890234.82653 / 12
P318.0o45.0o15369.40015364.02636.025.935.8039.01.82551.9890234.82654 / 12
P414.5o59.5o13572.7930.55.713567.84432.243.535.8039.01.81981.9890234.82655 / 12
P530.5o90.0o9003.25500.033.79000.09000.088.336.3039.51.81722.0145241.40506 / 12
30.5o120.5o4433.710069.561.74432.213567.8133.136.8040.01.81472.0399248.07368 / 12
P614.5o135.0o2637.011866.272.72636.015364.0150.736.8040.01.80372.0399248.07369 / 12
P718.0o153.0o981.313521.982.9980.917019.1166.937.3040.51.81892.0654254.832410 / 12
P818.0o171.0o110.814392.488.2110.817889.2175.437.3040.51.81362.0654254.832411 / 12
P99.0o180.0o014503.288.9018000.0176.537.3040.51.81292.0654254.832412 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8037at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.254622.9905
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =234.82652.3946CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=234.8265 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.7728.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.7828.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.8828.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.0728.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.2728.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3038.526.7829.4326.6940.00.7+0.32#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9639.027.2929.9526.6940.00.7+0.278 / 12
P614.5o135.0o39.1739.227.5030.1526.6940.00.7+0.06#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3739.427.6830.3326.6940.50.7+0.36#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4839.627.7830.4326.6940.50.7+0.25#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4939.627.7930.4426.6940.50.7+0.2412 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. T-3205(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.649, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2261.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8528.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8728.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9628.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1528.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8737.926.3528.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3238.526.8729.4326.69TD90USED0.7+0.30#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o39.0139.127.3829.9526.6940.00.7+0.238 / 12
P614.5o135.0o39.2339.327.5830.1526.6940.50.7+0.50#514.540.52436.29424.865,38232,2919 / 12
P718.0o153.0o39.4339.527.7730.3326.6940.50.7+0.29#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.5439.627.8630.4326.6940.50.7+0.18#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.5639.627.8830.4426.6940.50.7+0.1712 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=284.624, N¥õ=18.877
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,041,966N2043711.8Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6250.625
10¡¡¥ã = Liquid Density¥ã = 6.129156E-6N/mm©ø625.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.20483degree0.42245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99607510.9960751
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09448151.0944815
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41000000.4100000
20¡¡C5 = 22 / ¥õC5 = 0.90890930.9089093
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41000000.4100000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7946.224N-mm81.029Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 284.624N-mm2.902Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 18.877N-mm0.192Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8404.85N/mm8570.562Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7675.28N/mm7826.607Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.56mm3.956cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.3mm3.83cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 216.418MPa2206.849Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 933,592,940N-mm9519.999¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 355,069,974N-mm3620.706¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 469,111,987N-mm4783.611¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 166,765,270N-mm1700.532¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 233.408N/mm238.01Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 541,311,148N-mm5519.838¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 284,749,259N-mm2903.634¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 93,925,995mm©ø93.926¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,345,188,157mm©ø4345.188¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8569E-51.8569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.227031E-36.227031E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1873.604mm187.36cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 59.411N/mm60.582Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 47,613,755N-mm485.525¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 23,924,970N-mm243.967¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 801,429mm©ø8014.295cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 212,712,858mm©ø212.713¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 265.417mm26.542cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 526.095mm52.61cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 289.819N/mm295.533Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 201.185N/mm205.152Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,525,625N155570.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 40348.543N4114.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7382.624mm738.262cm

piDeg=[24.204834801458325] piRad=[0.42245406218675574] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P1917895.6001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P22717025.1001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P34515369.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P459.513572.7930.50.00571.77097946.2249.411.947995.647948.16222.68 < OK 23037.8637.9339.00.073.180.5970.0230.0990.004
P5909003.25500.00.03371.79897946.22284.6218.88233.4159.41289.82201.188404.857675.28222.38 < OK 23038.3038.4839.50.183.313.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.06171.82697946.22210.00345.658156.238291.88223.50 < OK 23038.9639.0340.00.072.822.5364.1740.4230.696
P61352637.011866.20.07271.83797946.22288.94365.868235.178312.08224.83 < OK 23039.1739.2440.00.072.253.494.4180.5820.736
P7153981.313521.90.08291.84817946.22359.29386.888305.518333.10223.04 < OK 23039.3739.4440.50.073.034.3394.6720.7230.779
P8171110.814392.40.08821.85347946.22395.57398.638341.798344.86223.68 < OK 23039.4839.5540.50.072.754.7774.8140.7960.802
P9180014503.20.08891.85417946.22400.16400.168346.388346.38223.76 < OK 23039.4939.5640.50.072.714.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=661.949, N¥õ=132.39
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,139,894N3277357.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7943.4N-mm81.0Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8883.26N/mm9058.404Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7612.2N/mm7762.284Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.19mm2.219cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.15mm2.115cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.589MPa3697.379Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,496,605,307N-mm15261.127¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 567,379,312N-mm5785.659¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 752,014,566N-mm7668.414¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 266,573,697N-mm2718.295¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 372.415N/mm379.758Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 867,867,174N-mm8849.782¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 456,414,316N-mm4654.131¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 65,250,509mm©ø65.251¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 94.501N/mm96.364Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 76,331,568N-mm778.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,355,103N-mm391.113¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 463.59N/mm472.73Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 322.105N/mm328.456Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,448,674N249695.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65095.462N6637.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0001.76527943.47943.407943.40378.26 < OK 394.2520.1520.1721.00.024.060000
P1917889.2110.80.00111.76637943.47.342.447950.747945.84378.49 < OK 394.2520.1620.1821.00.024.000.0550.0180.0090.003
P22717019.1980.90.00961.77487943.465.3521.238008.757964.63371.48 < OK 394.2520.2620.2821.50.025.780.4940.160.0820.027
P34515364.02636.00.02591.79117943.4177.8254.848121.227998.24374.90 < OK 394.2520.4420.4721.50.034.911.3430.4140.2240.069
P459.513567.84432.20.04351.80877943.4304.0387.158247.438030.55378.66 < OK 394.2520.6520.6721.50.023.952.2970.6580.3830.11
P5909000.09000.00.08831.85357943.4661.95132.39372.4294.50463.59322.108883.267612.20379.07 < OK 394.2521.1521.1822.00.033.85510.8330.167Column Attached Equator Plate
120.54432.213567.80.13311.89837943.4490.30707.198433.708650.59379.74 < OK 394.2521.6721.6922.50.023.683.7035.3420.6170.89
P61352636.015364.00.15071.91597943.4616.52739.508559.928682.90374.87 < OK 394.2521.8721.8923.00.024.914.6575.5860.7760.931
P7153980.917019.10.16691.93217943.4728.99773.118672.398716.51378.02 < OK 394.2522.0522.0823.00.034.125.5065.840.9180.973
P8171110.817889.20.17541.94067943.4787.00791.908730.408735.30379.69 < OK 394.2522.1522.1823.00.033.695.9455.9820.9910.997
P9180018000.00.17651.94177943.4794.34794.348737.748737.74379.90 < OK 394.2522.1622.1923.00.033.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 318231.293
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t39 ~ 40.5SHT46318.231388.242000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt40.5, t12¡¿3013¡¿3700SHT1012.56713.823000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86347.665418.932000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2281.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4001765.21765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9611 / 12
P19.0o9.0o17895.6001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9612 / 12
P218.0o27.0o17025.1001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9613 / 12
P318.0o45.0o15369.4001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9614 / 12
P414.5o59.5o13572.7930.55.41770.637.8637.9239.00.7+0.381.82011.98901.0¥òeq = 222.6485 / 12
P530.5o90.0o9003.25500.032.11797.338.2738.4540.00.7+0.351.81882.01451.0¥òeq = 222.1776 / 12
30.5o120.5o4433.710069.558.91824.138.9038.9740.00.7+0.331.81752.03991.0¥òeq = 223.158 / 12
P614.5o135.0o2637.011866.269.41834.639.1139.1840.00.7+0.121.80702.03991.0¥òeq = 224.4219 / 12
P718.0o153.0o981.313521.979.01844.239.3039.3740.50.7+0.431.82282.06541.0¥òeq = 222.57410 / 12
P818.0o171.0o110.814392.484.11849.339.4039.4740.50.7+0.331.81772.06541.0¥òeq = 223.18811 / 12
P99.0o180.0o014503.284.81850.039.4139.4840.50.7+0.321.81702.06541.8071.9891.0¥òeq = 223.26612 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.8070MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.9890MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002258.82258.825.2225.8228.4239.01.82551.9890¥òeq = 378.2571 / 12
P19.0o9.0o17889.2110.81.12259.925.2325.8328.4439.01.82551.9890¥òeq = 378.492 / 12
P218.0o27.0o17019.1980.99.62268.425.3325.9328.5339.01.82551.9890¥òeq = 371.4783 / 12
P318.0o45.0o15364.02636.025.92284.725.5226.1228.7239.01.82551.9890¥òeq = 374.9044 / 12
P414.5o59.5o13567.84432.243.52302.325.7226.3228.9239.01.82011.9890¥òeq = 378.6585 / 12
P530.5o90.0o9000.09000.088.32347.126.2326.8329.4340.01.81882.0145¥òeq = 379.076 / 12
30.5o120.5o4432.213567.8133.12391.926.7427.3429.9540.01.81752.0399¥òeq = 379.7438 / 12
P614.5o135.0o2636.015364.0150.72409.526.9527.5430.1540.01.80702.0399¥òeq = 374.8739 / 12
P718.0o153.0o980.917019.1166.92425.727.1327.7330.3340.51.82282.0654¥òeq = 378.02310 / 12
P818.0o171.0o110.817889.2175.42434.227.2327.8330.4340.51.81772.0654¥òeq = 379.68911 / 12
P99.0o180.0o018000.0176.52435.327.2427.8430.4440.51.81702.0654¥òeq = 379.90212 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8070at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.258823.0333
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00035.8039.01.82551.9890234.82651 / 12
P19.0o9.0o17895.60017889.2110.81.135.8039.01.82551.9890234.82652 / 12
P218.0o27.0o17025.10017019.1980.99.635.8039.01.82551.9890234.82653 / 12
P318.0o45.0o15369.40015364.02636.025.935.8039.01.82551.9890234.82654 / 12
P414.5o59.5o13572.7930.55.413567.84432.243.535.8039.01.82011.9890234.82655 / 12
P530.5o90.0o9003.25500.032.19000.09000.088.336.3039.51.81882.0145241.40506 / 12
30.5o120.5o4433.710069.558.94432.213567.8133.136.8040.01.81752.0399248.07368 / 12
P614.5o135.0o2637.011866.269.42636.015364.0150.736.8040.01.80702.0399248.07369 / 12
P718.0o153.0o981.313521.979.0980.917019.1166.937.3040.51.82282.0654254.832410 / 12
P818.0o171.0o110.814392.484.1110.817889.2175.437.3040.51.81772.0654254.832411 / 12
P99.0o180.0o014503.284.8018000.0176.537.3040.51.81702.0654254.832412 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8070at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.258823.0333
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =234.82652.3946CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=234.8265 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8228.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8328.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9328.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1228.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.3228.9226.6939.00.7+0.38#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.2738.426.8329.4326.6940.00.7+0.35#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9039.027.3429.9526.6940.00.7+0.338 / 12
P614.5o135.0o39.1139.227.5430.1526.6940.00.7+0.12#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3039.427.7330.3326.6940.50.7+0.43#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4039.527.8330.4326.6940.50.7+0.33#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4139.527.8430.4426.6940.50.7+0.3212 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.7728.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.7828.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.8828.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.0728.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.2728.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3038.526.7829.4326.69TD90USED0.7+0.32#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9639.027.2929.9526.6940.00.7+0.278 / 12
P614.5o135.0o39.1739.227.5030.1526.6940.00.7+0.06#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3739.427.6830.3326.6940.50.7+0.36#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4839.627.7830.4326.6940.50.7+0.25#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4939.627.7930.4426.6940.50.7+0.2412 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=271.417, N¥õ=18.001
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 19,259,269N1963898.9Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5960.596
10¡¡¥ã = Liquid Density¥ã = 5.844763E-6N/mm©ø596.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.20483degree0.42245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99607510.9960751
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09448151.0944815
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41000000.4100000
20¡¡C5 = 22 / ¥õC5 = 0.90890930.9089093
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41000000.4100000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7946.224N-mm81.029Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 271.417N-mm2.768Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 18.001N-mm0.184Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8384.84N/mm8550.157Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7685.73N/mm7837.263Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.48mm3.948cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.27mm3.827cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 216.22MPa2204.83Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 897,133,424N-mm9148.215¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 341,203,460N-mm3479.307¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 450,791,801N-mm4596.797¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 160,252,601N-mm1634.122¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 224.293N/mm228.715Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 520,171,375N-mm5304.272¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 273,628,974N-mm2790.239¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 93,925,995mm©ø93.926¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,345,188,157mm©ø4345.188¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8569E-51.8569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.227031E-36.227031E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1873.604mm187.36cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 57.091N/mm58.217Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 45,754,300N-mm466.564¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 22,990,631N-mm234.439¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 801,429mm©ø8014.295cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 212,712,858mm©ø212.713¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 265.417mm26.542cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 526.095mm52.61cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 278.501N/mm283.992Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 193.329N/mm197.141Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,466,045N149495.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 38772.815N3953.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7382.624mm738.262cm

piDeg=[24.204834801458325] piRad=[0.42245406218675574] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=1.7652 (kg/cm©÷), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P1917895.6001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P22717025.1001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P34515369.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P459.513572.7930.50.00541.77067946.2247.121.857993.347948.07222.65 < OK 23037.8637.9239.00.063.200.5970.0230.0990.004
P5909003.25500.00.03211.79737946.22271.4218.00224.2957.09278.50193.338384.847685.73222.18 < OK 23038.2738.4539.50.183.403.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.05891.82417946.22200.26329.618146.488275.84223.15 < OK 23038.9038.9740.00.072.982.5364.1740.4230.696
P61352637.011866.20.06941.83467946.22275.54348.888221.768295.11224.42 < OK 23039.1139.1840.00.072.433.494.4180.5820.736
P7153981.313521.90.07901.84427946.22342.61368.938288.848315.15222.57 < OK 23039.3039.3740.50.073.234.3394.6720.7230.779
P8171110.814392.40.08411.84937946.22377.21380.148323.448326.36223.19 < OK 23039.4039.4740.50.072.964.7774.8140.7960.802
P9180014503.20.08481.857946.22381.59381.598327.818327.81223.27 < OK 23039.4139.4840.50.072.934.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=661.949, N¥õ=132.39
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,139,894N3277357.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7943.4N-mm81.0Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8883.26N/mm9058.404Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7612.2N/mm7762.284Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.19mm2.219cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.15mm2.115cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.589MPa3697.379Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,496,605,307N-mm15261.127¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 567,379,312N-mm5785.659¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 752,014,566N-mm7668.414¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 266,573,697N-mm2718.295¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 372.415N/mm379.758Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 867,867,174N-mm8849.782¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 456,414,316N-mm4654.131¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 65,250,509mm©ø65.251¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 94.501N/mm96.364Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 76,331,568N-mm778.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,355,103N-mm391.113¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 463.59N/mm472.73Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 322.105N/mm328.456Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,448,674N249695.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65095.462N6637.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (kg/cm©÷), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0001.76527943.47943.407943.40378.26 < OK 394.2520.1520.1721.00.024.060000
P1917889.2110.80.00111.76637943.47.342.447950.747945.84378.49 < OK 394.2520.1620.1821.00.024.000.0550.0180.0090.003
P22717019.1980.90.00961.77487943.465.3521.238008.757964.63371.48 < OK 394.2520.2620.2821.50.025.780.4940.160.0820.027
P34515364.02636.00.02591.79117943.4177.8254.848121.227998.24374.90 < OK 394.2520.4420.4721.50.034.911.3430.4140.2240.069
P459.513567.84432.20.04351.80877943.4304.0387.158247.438030.55378.66 < OK 394.2520.6520.6721.50.023.952.2970.6580.3830.11
P5909000.09000.00.08831.85357943.4661.95132.39372.4294.50463.59322.108883.267612.20379.07 < OK 394.2521.1521.1822.00.033.85510.8330.167Column Attached Equator Plate
120.54432.213567.80.13311.89837943.4490.30707.198433.708650.59379.74 < OK 394.2521.6721.6922.50.023.683.7035.3420.6170.89
P61352636.015364.00.15071.91597943.4616.52739.508559.928682.90374.87 < OK 394.2521.8721.8923.00.024.914.6575.5860.7760.931
P7153980.917019.10.16691.93217943.4728.99773.118672.398716.51378.02 < OK 394.2522.0522.0823.00.034.125.5065.840.9180.973
P8171110.817889.20.17541.94067943.4787.00791.908730.408735.30379.69 < OK 394.2522.1522.1823.00.033.695.9455.9820.9910.997
P9180018000.00.17651.94177943.4794.34794.348737.748737.74379.90 < OK 394.2522.1622.1923.00.033.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 318231.293
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t39 ~ 40.5SHT46318.231388.242000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt40.5, t12¡¿3013¡¿3700SHT1012.56713.823000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86347.665418.932000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 7.9 kg/cm2(=774.725 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1092.8 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o25006.000774.7774.735.6235.6637.00.7+0.340.80650.87771.084¥òeq = 144.5681 / 13
P16.4o6.4o24928.100774.735.6235.6637.00.7+0.340.80650.87771.084¥òeq = 144.5682 / 13
P212.8o19.2o24310.500774.735.6235.6637.00.7+0.340.80650.87771.084¥òeq = 144.5683 / 13
P312.8o32.0o23106.1896.95.3780.035.8435.8837.00.7+0.340.80120.87771.084¥òeq = 143.4184 / 13
P49.5o41.5o21867.22135.812.6787.336.1536.1937.00.7+0.110.79390.87771.084¥òeq = 144.7795 / 13
P545.5o87.0o13157.410845.663.8838.538.4538.3539.50.7+0.350.80190.93701.084¥òeq = 144.2316 / 13
P63.0o90.0o12503.011500.067.7842.438.6538.5242.00.7+0.150.79800.93701.084¥òeq = 145.0327 / 13
48.5o138.5o3138.820864.2122.8897.540.7940.8442.00.7+0.460.80210.99621.084¥òeq = 143.8849 / 13
P79.5o148.0o1899.922103.1130.1904.841.0941.1542.00.7+0.150.79480.99621.084¥òeq = 145.03610 / 13
P812.8o160.8o695.523307.5137.1911.841.3941.4542.50.7+0.350.79961.00801.084¥òeq = 144.31411 / 13
P912.8o173.6o77.923925.1140.8915.541.5441.6042.50.7+0.200.79591.00801.084¥òeq = 144.88812 / 13
P106.4o180.0o024003.0141.2915.941.5641.6242.50.7+0.180.79551.00800.79390.87771.084¥òeq = 144.96113 / 13
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.7747MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.7939MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.8777MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 7.9 kg/cm2(=774.725 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1075.7 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o25000.0001075.71075.728.8129.5232.6437.00.80650.8777¥òeq = 215.1951 / 13
P16.4o6.4o24922.177.90.81076.528.8329.5432.6737.00.80650.8777¥òeq = 215.4072 / 13
P212.8o19.2o24304.7695.36.81082.528.9929.7132.8337.00.80650.8777¥òeq = 217.0953 / 13
P312.8o32.0o23100.61899.418.61094.329.3230.0333.1637.00.80120.8777¥òeq = 215.6254 / 13
P49.5o41.5o21861.93138.130.81106.529.6530.3733.4937.00.79390.8777¥òeq = 219.015 / 13
P545.5o87.0o13154.211845.8116.21191.932.0032.7235.8439.50.80190.9370¥òeq = 220.6916 / 13
P63.0o90.0o12500.012500.0122.61198.332.1832.8936.0142.00.79800.9370¥òeq = 217.7897 / 13
48.5o138.5o3138.121861.9214.41290.134.7035.4138.5442.00.80210.9962¥òeq = 220.8689 / 13
P79.5o148.0o1899.423100.6226.51302.235.0335.7538.8742.00.79480.9962¥òeq = 219.610 / 13
P812.8o160.8o695.324304.7238.31314.035.3636.0739.2042.50.79961.0080¥òeq = 218.33311 / 13
P912.8o173.6o77.924922.1244.41320.135.5236.2439.3642.50.79591.0080¥òeq = 219.63412 / 13
P106.4o180.0o025000.0245.21320.935.5536.2639.3842.50.79551.0080¥òeq = 219.79913 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.7747at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.049810.7045
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7939at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.075710.9691
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8777at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.189312.1275


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 7.9 kg/cm2(=774.725 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1075.7 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o25006.00025000.00034.0037.00.80650.8777109.60101 / 13
P16.4o6.4o24928.10024922.177.90.834.0037.00.80650.8777109.60102 / 13
P212.8o19.2o24310.50024304.7695.36.834.0037.00.80650.8777109.60103 / 13
P312.8o32.0o23106.1896.95.323100.61899.418.634.0037.00.80120.8777109.60104 / 13
P49.5o41.5o21867.22135.812.621861.93138.130.834.0037.00.79390.8777109.60105 / 13
P545.5o87.0o13157.410845.663.813154.211845.8116.236.5039.50.80190.9370126.26106 / 13
P63.0o90.0o12503.011500.067.712500.012500.0122.636.5039.50.79800.9370126.26107 / 13
48.5o138.5o3138.820864.2122.83138.121861.9214.439.0042.00.80210.9962144.09199 / 13
P79.5o148.0o1899.922103.1130.11899.423100.6226.539.0042.00.79480.9962144.091910 / 13
P812.8o160.8o695.523307.5137.1695.324304.7238.339.5042.50.79961.0080147.798411 / 13
P912.8o173.6o77.923925.1140.877.924922.1244.439.5042.50.79591.0080147.798412 / 13
P106.4o180.0o024003.0141.2025000.0245.239.5042.50.79551.0080147.798413 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.7747at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.049810.7045
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7939at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =1.075710.9691
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.8777at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =1.189312.1275
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =102.9698SA516-65
Maximum. Allowable External PressureMAEP =109.6011.1176CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=109.601 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 7.9 kg/cm2(=774.725 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1075.7 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o35.6235.729.5232.6435.9637.00.7+0.34#119.237.02792.58377.636,45519,3661 / 13
P16.4o6.4o35.6235.729.5432.6735.9637.00.7+0.342 / 13
P212.8o19.2o35.6235.729.7132.8335.9637.00.7+0.343 / 13
P312.8o32.0o35.8435.930.0333.1635.9637.00.7+0.34#212.837.02792.59567.745,99123,9634 / 13
P49.5o41.5o36.1536.230.3733.4935.9637.00.7+0.11#39.537.01858.68726.693,14028,2565 / 13
P545.5o87.0o38.4538.432.7235.8435.9639.50.7+0.35#445.539.52801.19970.0287,574212,0626 / 13
P63.0o90.0o38.6538.532.8936.0135.9642.00.7+0.15#551.542.02805.011335.6289,263259,3647 / 13
48.5o138.5o40.7940.835.4138.5435.9642.00.7+0.469 / 13
P79.5o148.0o41.0941.235.7538.8735.9642.00.7+0.15#69.542.01858.68726.693,56432,07410 / 13
P812.8o160.8o41.3941.436.0739.2035.9642.50.7+0.35#712.842.52792.59367.746,88127,52511 / 13
P912.8o173.6o41.5441.636.2439.3635.9642.50.7+0.20#819.242.52792.58377.637,41522,24412 / 13
P106.4o180.0o41.5641.636.2639.3835.9642.50.7+0.1813 / 13
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8228.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8328.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9328.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1228.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.3228.9226.6939.00.7+0.38#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.2738.426.8329.4326.69TD90USED0.7+0.35#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9039.027.3429.9526.6940.00.7+0.338 / 12
P614.5o135.0o39.1139.227.5430.1526.6940.00.7+0.12#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3039.427.7330.3326.6940.50.7+0.43#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4039.527.8330.4326.6940.50.7+0.33#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4139.527.8430.4426.6940.50.7+0.3212 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 35.96 mm; Pe :102.97 kPa ¡Â Pa = 103.02 kPa = 2*Fha*(tc/Ro)*1000; Fhe=39.181; Fic=39.181 MPa; Fha=19.59 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=25000 (cm), Sd=148.486 MPa, Pg=0.7747 (kg/cm©÷), HT_UPPCOL = 47600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=726.738, N¥õ=119.289
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25000mm2500.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12503mm1250.3cm
4¡¡L = Design Liquid levelL = 24000mm2400.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 54,337,431N5540875.9Kg
7¡¡S = Allowable Stress for the Design Condition SA516-65, Sd = 148.486MPaS = 148.486MPa1514.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.775MPa7.9Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.60.6
10¡¡¥ã = Liquid Density¥ã = 5.88399E-6N/mm©ø600.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.38325degree0.39066radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 23.10617degree0.40328radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99934430.9993443
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.01653311.0165331
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.38080000.3808000
20¡¡C5 = 22 / ¥õC5 = 0.98287800.9828780
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.38080000.3808000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 4843.037N-mm49.385Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 726.738N-mm7.411Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 119.289N-mm1.216Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 5782.02N/mm5896.02Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 4525.29N/mm4614.512Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 41.62mm4.162cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.65mm3.865cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 134.017MPa1366.593Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,787,577,801N-mm18228.221¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 701,864,163N-mm7157.023¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 896,045,194N-mm9137.118¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 337,989,632N-mm3446.535¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 278.942N/mm284.442Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,072,937,560N-mm10940.918¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 551,880,023N-mm5627.61¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 163,474,326mm©ø163.474¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 9,275,020,388mm©ø9275.02¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.2569E-51.2569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.930664E-34.930664E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2411.317mm241.132cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 66.696N/mm68.011Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 81,716,185N-mm833.273¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 40,961,235N-mm417.688¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,225,202mm©ø12252.017cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 386,684,518mm©ø386.685¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 315.609mm31.561cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 626.399mm62.64cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 437.038N/mm445.655Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 304.603N/mm310.609Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,983,908N304273.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 83391.101N8503.5Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9522.285mm952.228cm

piDeg=[22.38324530106262] piRad=[0.39066132778509216] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=25000 (cm), Sd=148.486 MPa, Pg=0.7747 (kg/cm©÷), HT_UPPCOL = 47600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025006.0000.77474843.044843.044843.04144.57 < OK 148.48635.6235.6636.50.042.640000
P16.424928.1000.77474843.044843.044843.04144.57 < OK 148.48635.6235.6636.50.042.640000
P219.224310.5000.77474843.044843.044843.04144.57 < OK 148.48635.6235.6636.50.042.640000
P33223106.1896.90.00530.784843.0458.637.354901.674850.38143.42 < OK 148.48635.8435.8837.00.043.410.3820.0480.0640.008
P441.521867.22135.80.01260.78734843.04132.4924.634975.534867.67144.78 < OK 148.48636.1536.1937.00.042.500.8640.1610.1440.027
P58713157.410845.60.06380.83854843.04679.39118.505522.434961.54144.23 < OK 148.48638.4538.3539.5-0.102.874.4320.7730.7390.129
P69012503.011500.00.06770.84244843.04726.74119.29278.9466.70437.04304.605782.024525.29145.03 < OK 148.48638.6538.5239.5-0.132.334.7410.7780.790.13Column Attached Equator Plate
138.53138.820864.20.12280.89754843.04706.97827.955550.015670.99143.88 < OK 148.48640.7940.8442.00.053.104.6125.4010.7690.9
P71481899.922103.10.13010.90484843.04777.14848.945620.175691.97145.04 < OK 148.48641.0941.1542.00.062.325.0695.5380.8450.923
P8160.8695.523307.50.13710.91184843.04844.43870.255687.465713.29144.31 < OK 148.48641.3941.4542.50.062.815.5085.6770.9180.946
P9173.677.923925.10.14080.91554843.04878.62881.495721.665724.53144.89 < OK 148.48641.5441.6042.50.062.425.7315.750.9550.958
P10180024003.00.14120.91594843.04882.92882.925725.965725.96144.96 < OK 148.48641.5641.6242.50.062.375.7595.7590.960.96


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=25000 (cm), Syt=228 MPa, MAWP=0.968375 (kg/cm©÷), HT_UPPCOL = 47700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=1276.908, N¥õ=255.382
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25000mm2500.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12500mm1250.0cm
4¡¡L = Hydrostatic-test Water LevelL = 25000mm2500.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 85,445,291N8712994.9Kg
7¡¡S = Allowable Stress for the Design Condition SA516-65, Sd = 228MPaS = 228.0MPa2324.953Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.775MPa7.9Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.43283degree0.39153radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99925870.9992587
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.01866871.0186687
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.38160000.3816000
20¡¡C5 = 22 / ¥õC5 = 0.98070570.9807057
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.38160000.3816000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 4841.875N-mm49.373Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 1276.908N-mm13.021Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 255.382N-mm2.604Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 6451.57N/mm6578.771Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 4411.37N/mm4498.346Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 27.99mm2.799cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 25.31mm2.531cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 199.014MPa2029.378Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 2,810,281,134N-mm28656.892¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 1,100,312,241N-mm11220.062¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 1,408,687,724N-mm14364.617¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 529,954,378N-mm5404.031¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 437.012N/mm445.628Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,687,344,186N-mm17206.122¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 867,795,503N-mm8849.051¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 133,207,581mm©ø133.208¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 9,328,165,518mm©ø9328.166¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.2709E-51.2709E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.963334E-34.963334E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2415.941mm241.594cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 104.221N/mm106.276Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 128,472,565N-mm1310.056¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 64,398,442N-mm656.681¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,232,692mm©ø12326.92cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 390,666,980mm©ø390.667¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 316.922mm31.692cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 628.984mm62.898cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 685.885N/mm699.408Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 478.35N/mm487.781Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 4,695,200N478777.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 131,738N13433.5Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9540.0mm954.0cm

piDeg=[22.432825607027144] piRad=[0.39152666736831926] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=25000 (cm), Syt=228 MPa, MAWP=0.968375 (kg/cm©÷), HT_UPPCOL = 47700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025000.0000.77474841.884841.884841.88215.20 < OK 22821.2421.2522.50.015.620000
P16.424922.177.90.00080.77554841.887.162.384849.044844.26215.41 < OK 22821.2621.2822.50.025.520.0280.0090.0050.002
P219.224304.7695.30.00680.78154841.8864.1321.104906.004862.98217.10 < OK 22821.4221.4422.50.024.780.2510.0830.0420.014
P33223100.61899.40.01860.79334841.88176.2256.615018.104898.49215.62 < OK 22821.7521.7723.00.025.430.690.2220.1150.037
P441.521861.93138.10.03080.80554841.88293.1191.575134.984933.44219.01 < OK 22822.0922.1023.00.013.941.1480.3590.1910.06
P58713154.211845.80.11620.89094841.881198.04254.056039.925095.93220.69 < OK 22824.6824.4425.5-0.243.214.6910.9950.7820.166
P69012500.012500.00.12260.89734841.881276.91255.38437.01104.22685.89478.356451.574411.37217.79 < OK 22825.3124.6226.5-0.694.48510.8330.167Column Attached Equator Plate
138.53138.121861.90.21440.98914841.881239.181440.726081.066282.60220.87 < OK 22827.1227.1428.00.023.134.8525.6410.8090.94
P71481899.423100.60.22651.00124841.881356.071475.686197.946317.55219.60 < OK 22827.4527.4828.50.033.685.315.7780.8850.963
P8160.8695.324304.70.23831.0134841.881468.161511.186310.046353.06218.33 < OK 22827.7727.8029.00.034.245.7495.9170.9580.986
P9173.677.924922.10.24441.01914841.881525.121529.906367.006371.78219.63 < OK 22827.9427.9729.00.033.675.9725.9910.9950.998
P10180025000.00.24521.01994841.881532.291532.296374.166374.16219.80 < OK 22827.9627.9929.00.033.606611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 88
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 624854.893
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 25000
MRA(sWt[tid][20][10])= 1963.496
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =14Columns
2. gCol[tid][2] =Column ODOD =1066.8mm
3. gCol[tid][3] =Column thkthk =15.09mm
4. gCol[tid][4] =Tank HeightHtank =15500mm
5. gCol[tid][5] =Upper Column HeightUCHT =4770mm
6. gCol[tid][6] =Lower Column HeightLCHT =10730mm
7. gCol[tid][7] =Column P.C.DPCD =24500mm
8. gCol[tid][8] =Brace AngleBRang =26.9345deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =11.4783deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-65t37 ~ 42.5SHT88624.855762.323000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt42.5, t17¡¿3651¡¿4770SHT1438.02941.832000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1066.8¡¿15.09t ¡¿ 10730LPCS1458.79058.790000,000000,0003
4BRACE ( PIPE, ¥è= 26.9345 deg.)null¨ª0¡¿0t ¡¿ 12036LPCS28000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-65(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-65PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL144721.674862.945000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. LH 2Rev. No.[AAA4] 
Design Code : Div. 1, Di = 18000 mm, CA = 0 mm, SG = 0.071, Pg= 5 kg/cm2(=490.333 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1457.2 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-3], DTEMP = 87 ¡É, Sd = 178.2 MPa, St = 526.5 MPa, Samb = 187 MPa, LSR = Samb/Sd = 1.049, Ft = 690 MPa, Fy = 585 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18000.000490.3490.312.3812.3827.00.7+0.391.06861.06861.049¥òeq = 01 / 12
P19.0o9.0o17889.2110.80.1490.412.3812.3927.00.7+0.391.06851.06861.049¥òeq = 02 / 12
P218.0o27.0o17019.1980.90.7491.012.4012.4027.00.7+0.391.06791.06861.049¥òeq = 03 / 12
P318.0o45.0o15364.02636.01.8492.112.4312.4327.00.7+0.391.06681.06861.049¥òeq = 04 / 12
P414.5o59.5o13567.84432.23.1493.412.4612.4627.00.7+0.391.06551.06861.049¥òeq = 05 / 12
P530.5o90.0o9000.09000.06.3496.612.5012.5427.00.7+0.391.06231.06861.049¥òeq = 06 / 12
30.5o120.5o4432.213567.89.4499.712.6212.6227.00.7+0.391.05921.06861.049¥òeq = 08 / 12
P614.5o135.0o2636.015364.010.7501.012.6512.6627.00.7+0.391.05791.06861.049¥òeq = 09 / 12
P718.0o153.0o980.917019.111.8502.112.6812.6827.00.7+0.391.05681.06861.049¥òeq = 010 / 12
P818.0o171.0o110.817889.212.5502.812.7012.7027.00.7+0.391.05611.06861.049¥òeq = 011 / 12
P99.0o180.0o018000.012.5502.812.7012.7027.00.7+0.391.05611.06861.05611.06861.049¥òeq = 012 / 12
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.4903MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.0561MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.0686MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. LH 2Rev. No.[AAA4] 
Design Code : Div. 1, Di = 18000 mm, CA = 0 mm, SG = 0.071, Pg= 5 kg/cm2(=490.333 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1440.2 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-3], DTEMP = 87 ¡É, Sd = 178.2 MPa, St = 526.5 MPa, Samb = 187 MPa, LSR = Samb/Sd = 1.049, Ft = 690 MPa, Fy = 585 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0001440.21440.25.7212.3112.4627.01.06861.0686¥òeq = 441.271 / 12
P19.0o9.0o17889.2110.81.11441.35.7212.3212.4727.01.06851.0686¥òeq = 442.2492 / 12
P218.0o27.0o17019.1980.99.61449.85.8012.3912.5427.01.06791.0686¥òeq = 409.0843 / 12
P318.0o45.0o15364.02636.025.91466.15.9412.5312.6827.01.06681.0686¥òeq = 422.7494 / 12
P414.5o59.5o13567.84432.243.51483.76.0912.6812.8327.01.06551.0686¥òeq = 438.055 / 12
P530.5o90.0o9000.09000.088.31528.56.4713.0713.2127.01.06231.0686¥òeq = 428.0576 / 12
30.5o120.5o4432.213567.8133.11573.36.8513.4513.5927.01.05921.0686¥òeq = 432.5198 / 12
P614.5o135.0o2636.015364.0150.71590.97.0013.6013.7427.01.05791.0686¥òeq = 444.059 / 12
P718.0o153.0o980.917019.1166.91607.17.1413.7413.8827.01.05681.0686¥òeq = 455.02310 / 12
P818.0o171.0o110.817889.2175.41615.67.2113.8113.9627.01.05611.0686¥òeq = 460.89311 / 12
P99.0o180.0o018000.0176.51616.77.2213.8213.9627.01.05611.0686¥òeq = 461.64512 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4903at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.66876.8185
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.0561at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.440214.6860
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.0686at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.457214.8593


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. LH 2Rev. No.[AAA4] 
Design Code : Div. 1, Di = 18000 mm, CA = 0 mm, SG = 0.071, Pg= 5 kg/cm2(=490.333 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1440.2 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-3], DTEMP = 87 ¡É, Sd = 178.2 MPa, St = 526.5 MPa, Samb = 187 MPa, LSR = Samb/Sd = 1.049, Ft = 690 MPa, Fy = 585 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18000.00018000.00027.0027.01.06861.0686111.82801 / 12
P19.0o9.0o17889.2110.80.117889.2110.81.127.0027.01.06851.0686111.82802 / 12
P218.0o27.0o17019.1980.90.717019.1980.99.627.0027.01.06791.0686111.82803 / 12
P318.0o45.0o15364.02636.01.815364.02636.025.927.0027.01.06681.0686111.82804 / 12
P414.5o59.5o13567.84432.23.113567.84432.243.527.0027.01.06551.0686111.82805 / 12
P530.5o90.0o9000.09000.06.39000.09000.088.327.0027.01.06231.0686111.82806 / 12
30.5o120.5o4432.213567.89.44432.213567.8133.127.0027.01.05921.0686111.82808 / 12
P614.5o135.0o2636.015364.010.72636.015364.0150.727.0027.01.05791.0686111.82809 / 12
P718.0o153.0o980.917019.111.8980.917019.1166.927.0027.01.05681.0686111.828010 / 12
P818.0o171.0o110.817889.212.5110.817889.2175.427.0027.01.05611.0686111.828011 / 12
P99.0o180.0o018000.012.5018000.0176.527.0027.01.05611.0686111.828012 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4903at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.66876.8185
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.0561at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.440214.6860
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.0686at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.457214.8593
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =102.9698SA553-TYPE1
Maximum. Allowable External PressureMAEP =111.8281.1403CS-3
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=111.828 kPa)
¡Ü Shell MaterialMATL =SA553-TYPE1
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =585.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 526.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =187.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =178.2 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.049
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-3 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 27.0 mm
Outside Radius of tank top headRo = 9027.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003739
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-3)Factor B =37.38784 MPa
Design External Pressure, ¡¡Pe = 1.05 (kg/cm©÷)Pe =102.9698 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =111.8280 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. LH 2Rev. No.[AAA4] 
Design Code : Div. 1, Di = 18000 mm, CA = 0 mm, SG = 0.071, Pg= 5 kg/cm2(=490.333 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1440.2 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-3], DTEMP = 87 ¡É, Sd = 178.2 MPa, St = 526.5 MPa, Samb = 187 MPa, LSR = Samb/Sd = 1.049, Ft = 690 MPa, Fy = 585 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o12.3812.412.3112.4625.9127.00.7+0.39#127.027.02827.48482.334,82914,4871 / 12
P19.0o9.0o12.3812.412.3212.4725.9127.00.7+0.392 / 12
P218.0o27.0o12.4012.412.3912.5425.9127.00.7+0.393 / 12
P318.0o45.0o12.4312.412.5312.6825.9127.00.7+0.39#218.027.02827.49200.044,27717,1074 / 12
P414.5o59.5o12.4612.512.6812.8325.9127.00.7+0.39#314.527.02436.29424.863,58821,5275 / 12
P530.5o90.0o12.5012.513.0713.2125.9127.00.7+0.39#461.027.02827.49681.9205,475109,4966 / 12
30.5o120.5o12.6212.613.4513.5925.9127.00.7+0.398 / 12
P614.5o135.0o12.6512.713.6013.7425.9127.00.7+0.39#514.527.02436.29424.863,58821,5279 / 12
P718.0o153.0o12.6812.713.7413.8825.9127.00.7+0.39#618.027.02827.49000.044,27717,10710 / 12
P818.0o171.0o12.7012.713.8113.9625.9127.00.7+0.39#727.027.02827.48482.334,82914,48711 / 12
P99.0o180.0o12.7012.713.8213.9625.9127.00.7+0.3912 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 6]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 7.9 kg/cm©÷(=774.725 kPa), Pe= 1.05 kg/cm©÷(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1075.7 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o35.6235.729.5232.6435.9637.00.7+0.34#119.237.02792.58377.636,45519,3661 / 13
P16.4o6.4o35.6235.729.5432.6735.9637.00.7+0.342 / 13
P212.8o19.2o35.6235.729.7132.8335.9637.00.7+0.343 / 13
P312.8o32.0o35.8435.930.0333.1635.9637.00.7+0.34#212.837.02792.59567.745,99123,9634 / 13
P49.5o41.5o36.1536.230.3733.4935.9637.00.7+0.11#39.537.01858.68726.693,14028,2565 / 13
P545.5o87.0o38.4538.432.7235.8435.9639.50.7+0.35#445.539.52801.19970.0287,574212,0626 / 13
P63.0o90.0o38.6538.532.8936.0135.96TD90USED0.7+0.15#551.542.02805.011335.6289,263259,3647 / 13
48.5o138.5o40.7940.835.4138.5435.9642.00.7+0.469 / 13
P79.5o148.0o41.0941.235.7538.8735.9642.00.7+0.15#69.542.01858.68726.693,56432,07410 / 13
P812.8o160.8o41.3941.436.0739.2035.9642.50.7+0.35#712.842.52792.59367.746,88127,52511 / 13
P912.8o173.6o41.5441.636.2439.3635.9642.50.7+0.20#819.242.52792.58377.637,41522,24412 / 13
P106.4o180.0o41.5641.636.2639.3835.9642.50.7+0.1813 / 13
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 25.91 mm; Pe :102.97 kPa ¡Â Pa = 103.01 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003588; Factor_B = 35.883 MPa


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=178.2 MPa, Pg=0.4903 (kg/cm©÷), HT_UPPCOL = 37200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=46.998, N¥õ=9.4
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Design Liquid levelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 3,183,990N324676.6Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = 178.2MPaS = 178.2MPa1817.134Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.49MPa5.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.0710.071
10¡¡¥ã = Liquid Density¥ã = 6.962722E-7N/mm©ø71.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.4144degree0.42611radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99568280.9956828
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.10337981.1033798
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41333330.4133333
20¡¡C5 = 22 / ¥õC5 = 0.90110750.9011075
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41333330.4133333
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2206.35N-mm22.499Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 46.998N-mm0.479Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 9.4N-mm0.096Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 2280.65N/mm2325.616Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2170.09N/mm2212.876Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 12.7mm1.27cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 12.5mm1.25cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 165.045MPa1682.991Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 148,263,576N-mm1511.868¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 55,849,974N-mm569.511¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 74,499,515N-mm759.684¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 26,258,359N-mm267.761¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 36.499N/mm37.219Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 85,999,766N-mm876.954¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 45,204,946N-mm460.962¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 31,808,922mm©ø31.809¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,450,101,419mm©ø4450.101¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.9385E-51.9385E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.389186E-36.389186E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1888.664mm188.866cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 9.198N/mm9.379Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 7,557,276N-mm77062.766Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 3,797,382N-mm38722.516Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 821,605mm©ø8216.048cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 221,746,899mm©ø221.747¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 269.895mm26.99cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 534.887mm53.489cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 45.663N/mm46.563Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 31.792N/mm32.419Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 243,055N24784.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 6522.121N665.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7440.0mm744.0cm

piDeg=[24.414402314929568] piRad=[0.4261117053020465] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=178.2 MPa, Pg=0.4903 (kg/cm©÷), HT_UPPCOL = 37200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0000.49032206.352206.352206.35163.43 < OK 178.212.3812.3813.58.290000
P1917889.2110.80.00010.49042206.350.520.172206.872206.52163.46 < OK 178.212.3812.3913.50.018.270.0550.0180.0090.003
P22717019.1980.90.00070.4912206.354.641.512210.992207.86163.66 < OK 178.212.4012.4013.58.160.4940.160.0820.027
P34515364.02636.00.00180.49212206.3512.633.892218.982210.24164.05 < OK 178.212.4312.4313.57.941.3430.4140.2240.069
P459.513567.84432.20.00310.49342206.3521.596.192227.942212.54164.46 < OK 178.212.4612.4613.57.712.2970.6580.3830.11
P5909000.09000.00.00630.49662206.3547.009.4036.509.2045.6631.792280.652170.09165.04 < OK 178.212.5012.5413.50.047.38510.8330.167Column Attached Equator Plate
120.54432.213567.80.00940.49972206.3534.8150.212241.162256.56166.58 < OK 178.212.6212.6213.56.523.7035.3420.6170.89
P61352636.015364.00.01070.5012206.3543.7752.502250.122258.85167.00 < OK 178.212.6512.6613.50.016.294.6575.5860.7760.931
P7153980.917019.10.01180.50212206.3551.7654.892258.112261.24167.38 < OK 178.212.6812.6813.56.075.5065.840.9180.973
P8171110.817889.20.01250.50282206.3555.8856.222262.232262.57167.58 < OK 178.212.7012.7013.55.965.9455.9820.9910.997
P9180018000.00.01250.50282206.3556.4056.402262.752262.75167.61 < OK 178.212.7012.7013.55.946611


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=526.5 MPa, MAWP=0.63739 (kg/cm©÷), HT_UPPCOL = 37200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

ABCD, N¥è=661.949, N¥õ=132.39
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 30,572,732N3117551.1Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = 526.5MPaS = 526.5MPa5368.806Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.49MPa5.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.4144degree0.42611radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99568280.9956828
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.10337981.1033798
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41333330.4133333
20¡¡C5 = 22 / ¥õC5 = 0.90110750.9011075
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41333330.4133333
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2206.35N-mm22.499Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3130.44N/mm3192.16Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 1900.28N/mm1937.746Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 5.7mm0.57cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 5.28mm0.528cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 428.057MPa4364.967Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,423,629,888N-mm14516.985¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 536,272,589N-mm5468.459¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 715,345,861N-mm7294.498¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 252,133,297N-mm2571.044¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 350.465N/mm357.375Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 825,771,507N-mm8420.526¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 434,058,811N-mm4426.168¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 18,849,732mm©ø18.85¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,450,101,419mm©ø4450.101¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.9385E-51.9385E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.389186E-36.389186E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1888.664mm188.866cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 88.321N/mm90.062Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 72,565,116N-mm739.958¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 36,462,535N-mm371.814¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 821,605mm©ø8216.048cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 221,746,899mm©ø221.747¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 269.895mm26.99cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 534.887mm53.489cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 438.461N/mm447.106Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 305.268N/mm311.287Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,333,823N237983.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 62625.535N6386.0Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7440.0mm744.0cm

piDeg=[24.414402314929568] piRad=[0.4261117053020465] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=526.5 MPa, MAWP=0.63739 (kg/cm©÷), HT_UPPCOL = 37200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0000.49032206.352206.352206.35441.27 < OK 526.54.194.195.016.190000
P1917889.2110.80.00110.49142206.357.342.442213.692208.79442.25 < OK 526.54.204.205.016.000.0550.0180.0090.003
P22717019.1980.90.00960.49992206.3565.3521.232271.702227.58409.08 < OK 526.54.274.275.522.300.4940.160.0820.027
P34515364.02636.00.02590.51622206.35177.8254.842384.172261.19422.75 < OK 526.54.424.415.5-0.0119.711.3430.4140.2240.069
P459.513567.84432.20.04350.53382206.35304.0387.152510.382293.50438.05 < OK 526.54.584.565.5-0.0216.802.2970.6580.3830.11
P5909000.09000.00.08830.57862206.35661.95132.39350.4788.32438.46305.273130.441900.28428.06 < OK 526.55.284.956.5-0.3318.70510.8330.167Column Attached Equator Plate
120.54432.213567.80.13310.62342206.35490.30707.192696.652913.54432.52 < OK 526.55.345.336.5-0.0117.853.7035.3420.6170.89
P61352636.015364.00.15070.6412206.35616.52739.502822.872945.85444.05 < OK 526.55.485.486.515.664.6575.5860.7760.931
P7153980.917019.10.16690.65722206.35728.99773.112935.342979.46455.02 < OK 526.55.625.626.513.585.5065.840.9180.973
P8171110.817889.20.17540.66572206.35787.00791.902993.352998.25460.89 < OK 526.55.695.696.512.465.9455.9820.9910.997
P9180018000.00.17650.66682206.35794.34794.343000.693000.69461.64 < OK 526.55.705.706.512.326611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 215739.254
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3720mm
6. gCol[tid][6] =Lower Column HeightLCHT =8280mm
7. gCol[tid][7] =Column P.C.DPCD =17580mm
8. gCol[tid][8] =Brace AngleBRang =33.2689deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.4015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA553-TYPE1t27 ~ 27SHT46215.739263.202000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt27, t12¡¿3013¡¿3720SHT1011.83113.014000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8280LPCS1016.82616.826000,000000,0003
4BRACE ( PIPE, ¥è= 33.2689 deg.)null¨ª0¡¿0t ¡¿ 9903LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA553-TYPE1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA553-TYPE1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86244.397293.042000,000000,00012
]CODE_CALC() 111 Tank Qty = iMax = [8]
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [47.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [40.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [40.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [40.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [6] mySum = [90.0] tUsed = [42.0]mm
]
sph.uAry.length = [2] uAry[0].length = [5]
sph.bAry.length = [38] bAry[0].length = [15]
sph.cAry.length = [36] cAry[0].length = [12]
sph.dAry.length = [36] dAry[0].length = [12]
tReq=[
tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1 tReq =  
PR
2SE £­ 0.2P
  £« CA

Div.1 tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1¡¡ tReq =  
P¡¤Rc
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA


½ÃÀ۽ð£ = [2024-12-05 09:35:12.0526]
Á¾·á½Ã°£ = [2024-12-05 09:35:12.0613]

HTML END!!!