HTML Ư¼ö¹®ÀÚ ¸®½ºÆ® (¡î ¡î ¡î ¥ð ©ª £í©÷£í©ø £í©ù, ©ö ©÷ ©ø ©ù, ©û©ü©ý©þ, ¤§ £« £­ ¡¿ ¡À ¡¾ ¡Â ¡Ã ¡É ¢º ¤º ¡îax2 + bx + c

½ÃÀ۽ð£ = [2025-04-03 10:20:50.0576]
req=[org.apache.catalina.connector.RequestFacade@59dcdce0]
res=[org.apache.catalina.connector.ResponseFacade@33292437]
conn=[com.mysql.jdbc.JDBC4Connection@1840a51d]
cdAry[0] = []
cdAry[1] = [TABLE 1.1) String uAry[][]
query[0] = Select sid, SYMBOL, UNIT, DESCR, kid From S_DATA Where kid=9 and sid=0
sidSYMBOLUNITDESCRkid
0PUnitkg/cm©÷ 0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ | 9

]
cdAry[2] = [TABLE 2.1) String bAry[][] = S_RESULT
query[1] = Select sid, DESCR, UNIT, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,REMARK From S_RESULT Where kid=9 and sid<100 Order By sid
sidDESCRUNITSYMBOLT1T2T3T4T5T6T7T8T9T10REMARK
0Nominal Capacity [°øĪ¿ë·®]m©øV_nom1467.7602618.1003053.6303053.6308181.230696.9102500.4902006.970904.780381.700 
1Storage Capacity [ÀúÀå¿ë·®]m©øV_sto1320.9702454.9302752.1702752.1708143.010538.3302241.5801950.430876.950370.320 
2Vapor Space Capacitym©øV_hil146.790163.170301.460301.46038.220158.580258.91056.54027.83011.380 
3Storage Capacity Ratio%R_Sto90.00093.77090.13090.13099.53077.25089.65097.18096.92097.020 
4Vapor Space Ratio%R_vapor10.0006.2309.8709.8700.47022.75010.3502.8203.0802.980 
10A. WEIGHT SUMMARY   
11SHELL PLATETonWs184.312509.880319.640319.6401272.816121.744154.050157.56646.26520.020 
12UPPER COLUMN (PLATE)TonWuc4.57810.67913.81913.81932.3721.9006.9056.6482.6431.711 
13LOWER COLUMN (PIPE)TonWc12.37618.45422.93422.93456.3344.50313.93320.9784.0793.273 
14CROSS BRACE (PIPE)TonWb10.76115.06115.54715.54738.7712.85311.39616.6252.8302.169 
15ROOF PLATFORM & STAIRWAYTonWr11.13816.60920.64120.64150.7014.05312.54018.8803.6712.946 
16WATER SPRAY AND ATTACHMENTTonWsp9.90114.76318.34718.34745.0673.60211.14616.7823.2632.618 
17MANHOLE & NOZZLETonWn8.10012.20016.30016.30019.5008.10012.20012.2008.1008.100 
18INTERNAL LADDER & ATTACHMENTTonWi6.3919.62612.86112.86115.3866.3919.6269.6266.3916.391 
19ANCHOR BOLT/NUTTonWa2.5443.1803.1803.1804.4521.9083.1803.1802.5441.908 
20COLUMN FIRE PROOFINGTonWin20.10030.20040.30040.30070.50020.10030.20030.20020.10020.100 
21BLANK 1TonW_1 
22BLANK 2TonW_2 
23BLANK 3TonW_3 
24BLANK 4TonW_4 
25BLANK 5TonW_5 
26Lower-Column O.DmmDcol508.300812.800914.400914.4001066.800406.400609.600609.600406.400406.400 
27Lower-Column ThicknessmmTcol15.10013.00014.00014.00016.00012.70012.70012.70012.70012.700 
28Cross-Brace O.DmmDbrace219.100273.100273.100273.100323.500168.300273.100219.100168.300168.300 
29Cross-Brace ThicknessmmTbrace12.70012.70012.70012.70015.6007.1009.30012.7007.1007.100 
30¡á EMPTY WEIGHT (1 Unit)TonWe270.200640.650483.570483.5701605.900175.150265.180292.69099.89069.240We = W(1)+ .. +W(10)
31B. LOADING DATA   
32¡¡CONTENTS WEIGHT (at Operating)TonWc93.7901593.2501720.1101640.2904885.810288.5401448.0601212.190438.480185.160Wc = Vsto * S.G
33HYDROSTATIC TEST WATER WEIGHTTonWt1467.7602618.1003053.6303053.6308181.230696.9102500.4902006.970904.780381.700Wt = Vnom * 1.0
34¡¡1) VERTICAL LOAD   
35EMPTY WEIGHTTonWe270.200640.650483.570483.5701605.900175.150265.180292.69099.89069.240We = W(1)+ .. +W(10)
36OPERATING WEIGHTTonWo363.9902233.9002203.6802123.8606491.710463.6901713.2401504.880538.370254.400Wo = We + Wc
37HYDROSTATIC TEST WEIGHTTonWh1737.9603258.7503537.2003537.2009787.130872.0602765.6702299.6601004.670450.940Wh = We + Wt
38¡¡2) HORIZONTAL LOAD   
39SEISMIC FACTOR (CS=0.25 Fix) CS0.2500.2500.2500.2500.2500.2500.2500.2500.2500.250 
40SEISMIC LOAD (Base Shear) Vs = CS x WoTonVs91.000558.480550.920530.9701622.930115.920428.310376.220134.59063.600Vs = CS x Wo
41WIND LOAD (Base Shear)TonVw 

]
cdAry[3] = [TABLE 3.1) String cAry[][] = S_DETAIL, cAry.length = [36] cAry[0].length = [12]
query[2] = Select sid, SYMBOL, T1,T2,T3,T4,T5,T6,T7,T8,T9,T10 From S_DETAIL Where kid=9 and sid<100 Order By sid
sidSYMBOLT1T2T3T4T5T6T7T8T9T10
1TNOSK-01SK-02T-3208(3)T-3213(3)TKK¾ËÁ¦¸®·Ôµ¥ G1¸»·¹À̽þÆSN2388SN2345
2CODEDIV. 1DIV. 1DIV. 2DIV. 2DIV. 2DIV. 1DIV. 1DIV. 1DIV. 1DIV. 1
3CONTENTLH2LH2Crude C4HP PetrochemicalMixed C4LPGC41.3 BUTADIENELNG FUELLNG FUEL
4SG0.0710.6490.6250.5960.60.5360.6460.62150.50.5
5MATLSA240-316LSA516-60SA537-CL2SA537-CL2SA516-65SA537-CL2SA516-70SA516-70SA553-TYPE1SA553-TYPE1
6DTEMP707070708710080684040
7Sd115.00118.00230.00230.00148.49158.00138.00138.00197.00197.00
8Di1410017100180001800025000110001684015650120009000
9CA03.03.23.23.01.51.53.011
10HT12000115501200012000155009000114201535070007000
11HHLL113391450014500145002400076001348014080107408070
12HLL113391410014100141002400076001348012520107408070
13LLL2300230023002300100010001000200020002000
14LLLL2000200020002000100010001000100010001000
15Pi11.63318.018.018.017.921.92396.06.05.0761475.076147
16Pe1.0332271.0332271.0332271.0332271.051.050.5171.0332270.450.45
17MDMT-15-15-15-15-10-46-15-19-19-19
18E1.01.01.01.0111111
19TQTY4.04.04.04.01110111
20CQTY8101010146101086
21SQTY79991058875
22CACB3.0 / 3.03.0 / 3.03.0 / 3.03.0 / 3.03.0 / 3.01.5 / 1.51.5 / 1.51.5 / 1.51.5 / 1.51.5 / 1.5
23L64.064.064.064.064646425.425.225.2
24tdReq35.2570.4239.5639.4883.1039.6822.0722.139.397.14
25twReq37.3953.2527.2527.2567.0721.4016.7415.374.363.14
26tmReq37.3953.2528.2628.2669.4821.4016.7415.374.363.14
27teReq20.3727.418.3918.4216.5816.7518.525.2512.28.98
28tTops36.068.039.039.078.540.520.526.013.010.0
29tMids38.571.040.040.083.540.522.526.013.010.0
30tBtms38.571.540.540.584.040.523.026.013.010.0
31tUsed38.571.540.540.584.040.523.026.013.010.0
32MSGOKµÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!OKOKµÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!OKOKOKOKOK
33tdCyo70.84138.9276.0775.91163.7278.3942.7441.3617.813.3
34ttCyt75.19110.1759.8159.81142.3544.4635.0533.89.727.29
35tCyli76.0140.077.077.0164.579.543.542.519.014.5

]
cdAry[4] = [[cAry, dAry] TANK STRENGTH CALCULATION SHEET, uid= [0], units= [kg/cm©÷]
11TANK NO. (Max. 40 Char.)TNO =SK-01
0
SK-02
0
T-3208(3)
0
T-3213(3)
0
TKK
0
¾ËÁ¦¸®
0
·Ôµ¥ G1
0
¸»·¹À̽þÆ
0
SN2388
0
SN2345
0
22VESSEL DESIGN CODE (ASME SEC. VIII, Div. 1,2)CODE =DIV. 1
1
DIV. 1
1
DIV. 2
2
DIV. 2
2
DIV. 2
2
DIV. 1
1
DIV. 1
1
DIV. 1
1
DIV. 1
1
DIV. 1
1
33STORAGE LIQUID NAMECONTENT =LH2
0
LH2
0
Crude C4
0
HP Petrochemical
0
Mixed C4
0
LPG
0
C4
0
1.3 BUTADIENE
0
LNG FUEL
0
LNG FUEL
0
44DESIGN SPECIFIC GRAVITYSG =0.071
0.071
0.649
0.649
0.625
0.625
0.596
0.596
0.6
0.6
0.536
0.536
0.646
0.646
0.6215
0.6215
0.5
0.5
0.5
0.5
55MATERIAL OF SHELL PLATEMATL =SA240-316L
0
SA516-60
0
SA537-CL2
0
SA537-CL2
0
SA516-65
0
SA537-CL2
0
SA516-70
0
SA516-70
0
SA553-TYPE1
0
SA553-TYPE1
0
66DESIGN TEMPERATURE (Max.)DTEMP =¡É70
70
70
70
70
70
70
70
87
87
100
100
80
80
68
68
40
40
40
40
77ALLOWABLE STRESS at Deisin(Operating)Sd =MPa115.00
115
118.00
118
230.00
230
230.00
230
148.49
148.49
158.00
158
138.00
138
138.00
138
197.00
197
197.00
197
88TANK INSIDE DIAMETERDi =mm14100
14100
17100
17100
18000
18000
18000
18000
25000
25000
11000
11000
16840
16840
15650
15650
12000
12000
9000
9000
99CORROSION ALLOWANCE (SHELL)CA =mm0
0
3.0
3
3.2
3.2
3.2
3.2
3.0
3
1.5
1.5
1.5
1.5
3.0
3
1
1
1
1
1010TANK EQUATOR LEVEL (FROM GROUND)HT =mm12000
12000
11550
11550
12000
12000
12000
12000
15500
15500
9000
9000
11420
11420
15350
15350
7000
7000
7000
7000
1111(SHELL µÎ²²°è»ê ³ôÀÌ) HIGH HIGH LIQUID LEVELHHLL =mm11339
11339
14500
14500
14500
14500
14500
14500
24000
24000
7600
7600
13480
13480
14080
14080
10740
10740
8070
8070
1212(Storage ¿ë·®°è»ê ¾×³ôÀÌ) HIGH LIQUID LEVELHLL =mm11339
11339
14100
14100
14100
14100
14100
14100
24000
24000
7600
7600
13480
13480
12520
12520
10740
10740
8070
8070
1313LOW LIQUID LEVELLLL =mm2300
2300
2300
2300
2300
2300
2300
2300
1000
1000
1000
1000
1000
1000
2000
2000
2000
2000
2000
2000
1414LOW LOW LIQUID LEVELLLLL =mm2000
2000
2000
2000
2000
2000
2000
2000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1515DESIGN INTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pi =
kg/cm©÷
kPa
11.633
1140.8075945
18.0
1765.197
18.0
1765.197
18.0
1765.197
17.9
1755.39035
21.9239
2150.0001394
6.0
588.399
6.0
588.399
5.076147
497.7999698
5.076147
497.7999698
1616DESIGN EXTERNAL PRESSURE (DATA SHEET »óÀÇ ¾Ð·Â)
ÇÁ·Î±×·¥ÀÌ °è»ê½Ã »ç¿ëÇÏ´Â ¾Ð·ÂÀº? [SI UNIT]
Pe =
kg/cm©÷
kPa
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.033227
101.3249556
1.05
102.969825
1.05
102.969825
0.517
50.7003805
1.033227
101.3249556
0.45
44.129925
0.45
44.129925
1717MIN.DESIGN METAL TEMPERATUREMDMT =¡É-15
-15
-15
-15
-15
-15
-15
-15
-10
-10
-46
-46
-15
-15
-19
-19
-19
-19
-19
-19
1818SHELL JOINT EFFICIENCYE =1.0
1
1.0
1
1.0
1
1.0
1
1
1
1
1
1
1
1
1
1
1
1
1
1919TANK QUANTITY (ÅÊÅ©¼ö·® Á÷Á¢ÀÔ·Â)TQTY =Unit4.0
4
4.0
4
4.0
4
4.0
4
1
1
1
1
10
10
1
1
1
1
1
1
2020COLUMN QUANTITY (¼ö·®ÀÚµ¿°è»ê)CQTY =EA8
8
10
10
10
10
10
10
14
14
6
6
10
10
10
10
8
8
6
6
2121SHELL SEGMENT QUANTITY (¼ö·®ÀÚµ¿°è»ê)SQTY =EA7
7
9
9
9
9
9
9
10
10
5
5
8
8
8
8
7
7
5
5
2222CORROSION ALLOWANCE (Column/Brace)CACB =mm3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
3.0 / 3.0
0
1.5 / 1.5
0
1.5 / 1.5
0
1.5 / 1.5
0
1.5 / 1.5
0
1.5 / 1.5
0
2323Cylinderical Vessel Longitudinal Length
ex) Mounded Bullet Vessel(Cylinderical) Length
L =(m)64.0
64
64.0
64
64.0
64
64.0
64
64
64
64
64
64
64
25.4
25.4
25.2
25.2
25.2
25.2
2424Req'd Thickness under Operating Cond. (Pi+Ps)tdReq =mm35.25
35.25
70.42
70.42
39.56
39.56
39.48
39.48
83.10
83.1
39.68
39.68
22.07
22.07
22.13
22.13
9.39
9.39
7.14
7.14
2525Req'd Thickness under Hydro-test (MAWP) (Pt)twReq =mm37.39
37.39
53.25
53.25
27.25
27.25
27.25
27.25
67.07
67.07
21.40
21.4
16.74
16.74
15.37
15.37
4.36
4.36
3.14
3.14
2626Req'd Thickness under Hydro-test (MAP) (Pt)tmReq =mm37.39
37.39
53.25
53.25
28.26
28.26
28.26
28.26
69.48
69.48
21.40
21.4
16.74
16.74
15.37
15.37
4.36
4.36
3.14
3.14
2727Req'd Thickness under External Pressue (Pe)teReq =mm20.37
20.37
27.4
27.4
18.39
18.39
18.42
18.42
16.58
16.58
16.75
16.75
18.5
18.5
25.25
25.25
12.2
12.2
8.98
8.98
2828¡¡¡¡¡¡¡Ü Top Shell Used ThicknesstTops =mm36.0
36
68.0
68
39.0
39
39.0
39
78.5
78.5
40.5
40.5
20.5
20.5
26.0
26
13.0
13
10.0
10
2929¡¡¡¡¡¡¡Ü Equator Used ThicknesstMids =mm38.5
38.5
71.0
71
40.0
40
40.0
40
83.5
83.5
40.5
40.5
22.5
22.5
26.0
26
13.0
13
10.0
10
3030¡¡¡¡¡¡¡Ü Bottom Shell Used ThicknesstBtms =mm38.5
38.5
71.5
71.5
40.5
40.5
40.5
40.5
84.0
84
40.5
40.5
23.0
23
26.0
26
13.0
13
10.0
10
3131¡¡¡¡¡¡¡Ü Max. (Spherical) Used ThicknesstUsed =mm38.5
38.5
71.5
71.5
40.5
40.5
40.5
40.5
84.0
84
40.5
40.5
23.0
23
26.0
26
13.0
13
10.0
10
3232If (tUsed ¡Â 64mm) then Accetable
Else (tUsed>64mm) Sd ReSelect
MSG =OK
0
µÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!
0
OK
0
OK
0
µÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!
0
OK
0
OK
0
OK
0
OK
0
OK
0
3333(¡Ü Cylinder) Req'd Thickness under Oper. (Pi+Ps)tdCyo =mm70.84
70.84
138.92
138.92
76.07
76.07
75.91
75.91
163.72
163.72
78.39
78.39
42.74
42.74
41.36
41.36
17.8
17.8
13.3
13.3
3434(¡Ü Cylinder) Req'd Thickness under Hydrotest(Pt)ttCyt =mm75.19
75.19
110.17
110.17
59.81
59.81
59.81
59.81
142.35
142.35
44.46
44.46
35.05
35.05
33.8
33.8
9.72
9.72
7.29
7.29
3535¡¡¡¡¡¡¡Ü Max. (Cylinder) Used ThicknesstCyli =mm76.0
76
140.0
140
77.0
77
77.0
77
164.5
164.5
79.5
79.5
43.5
43.5
42.5
42.5
19.0
19
14.5
14.5

cAry[0].length=[12][12] END OF MYSQL_SPH_DATAREAD(), cAry.length = [36] dAry.length = [36]
]
cdAry[5] = []
rv=[sphereColumnSTD.jsp sph.WLEDING_LENGTH_CALC();

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 14,100 (m), Material SA240-316L, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0111130.52707812115,00016,24230.52707812135000.2315000.71137.3762.653
#2, 0223330.527077031.9210,000©ª7679.428,1286,121
#3, 3225530.527079071.4416,883©ª1155036,28630.527078367.144220.7616883.11868.9270.515
#4, 47012532.02768.58742.21689,991©ª14100137,81132.02768.58742.2165624.4389990.98087.42358.244
#5, 72214732.527079071.4417,990©ª1155036,28632.527078167.144497.5417990.11868.9270.515
#6, 82216933.027077031.9210,820©ª7679.428,1286,12133.02707812135410.0916230.31137.3762.653
#7, 81118033.02707812115,41016,242
Total Quantity and Shell Weight30156,095kg161.3 (m)150.1 (m)3015609514100.00624.58
Total Site Weleding length (m)311.4 (m)
myEQid[tid] = [ 3 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 17,100 (m), Material SA516-60, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09968.02686.18058.2110,97616,11668.02686.18058.2310976.3532929.1931.8961.688
#2, 0182768.02686.17287.5221,953©ª7763.229,1505,506
#3, 3184568.02686.19496.7438,884©ª12091.537,98768.02686.1875049720.9038883.61572.3572.843
#4, 414.559.568.57714.62163.8649,291©ª14733.946,28812,98368.52314.48953.568215.0949290.61706.3191.665
#5, 561120.570.52686.19195.720258,029©ª17100182,05570.52686.19195.72012901.47258029.48678.9466.241
#6, 814.513571.07714.62163.8651,089©ª14733.946,28812,98371.02314.48953.568514.9251089.51706.3191.665
#7, 91815371.02686.19496.7440,599©ª12091.537,98771.02686.18550410149.7640599.01572.3572.843
#8, 101817171.52686.17287.5223,083©ª7763.229,1505,50671.52686.18058.2311541.3134623.9931.8961.688
#9, 10918071.52686.18058.2111,54116,116
Total Quantity and Shell Weight46505,445kg259.1 (m)219.0 (m)46505445.117100.00918.633
Total Site Weleding length (m)478.1 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09939.02827.48482.316,97516,96539.02827.48482.336975.3220926.0980.9468.352
#2, 0182739.02827.47671213,951©ª8171.830,6845,796
#3, 3184539.02827.49996.5424,710©ª12727.939,98639.02827.4920046177.5724710.31655.180.713
#4, 414.559.539.08120.72277.7631,095©ª15509.348,72413,66639.02436.29424.865182.5131095.01796.11101.568
#5, 561120.540.02827.49679.720162,216©ª18000191,63740.02827.49679.7208110.81162216.29135.7516.612
#6, 814.513540.08120.72277.7631,892©ª15509.348,72413,66640.02436.29424.865315.3931892.41796.11101.568
#7, 91815340.52827.49996.5425,661©ª12727.939,98640.52827.4900046415.1725660.71655.180.713
#8, 101817140.52827.47671214,487©ª8171.830,6845,79640.52827.48482.337243.6021730.8980.9468.352
#9, 10918040.52827.48482.317,24416,965
Total Quantity and Shell Weight46318,231kg272.7 (m)230.6 (m)46318231.318000.001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 18,000 (m), Material SA537-CL2, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 09939.02827.48482.316,97516,96539.02827.48482.336975.3220926.0980.9468.352
#2, 0182739.02827.47671213,951©ª8171.830,6845,796
#3, 3184539.02827.49996.5424,710©ª12727.939,98639.02827.4920046177.5724710.31655.180.713
#4, 414.559.539.08120.72277.7631,095©ª15509.348,72413,66639.02436.29424.865182.5131095.01796.11101.568
#5, 561120.540.02827.49679.720162,216©ª18000191,63740.02827.49679.7208110.81162216.29135.7516.612
#6, 814.513540.08120.72277.7631,892©ª15509.348,72413,66640.02436.29424.865315.3931892.41796.11101.568
#7, 91815340.52827.49996.5425,661©ª12727.939,98640.52827.4900046415.1725660.71655.180.713
#8, 101817140.52827.47671214,487©ª8171.830,6845,79640.52827.48482.337243.6021730.8980.9468.352
#9, 10918040.52827.48482.317,24416,965
Total Quantity and Shell Weight46318,231kg272.7 (m)230.6 (m)46318231.318000.001017.878
Total Site Weleding length (m)503.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 25,000 (m), Material SA516-65, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 06.46.478.02792.58377.6113,60816,75578.02792.58377.6313608.3740825.1695.366.675
#2, 012.819.278.02792.57943.1227,217©ª8221.731,7735,045
#3, 312.83278.52792.510404.9450,841©ª1324841,62078.52792.59567.7412710.2650841.01204.182.504
#4, 49.541.578.58673.72072.6659,948©ª16565.552,04212,43578.51858.68726.696660.9159948.21238.6597.283
#5, 545.58781.02801.19926.628434,861©ª24965.778,432277,94481.02801.199702815530.75434861.08707.75683.905
#6, 651.5138.583.5280511297.428515,641©ª25000314,59683.5280511297.42818415.73515640.610016.15786.667
#7, 99.514883.58673.72072.6663,767©ª16565.552,04212,43583.51858.68726.697085.1863766.61238.6597.283
#8, 1012.8160.884.02792.510404.9454,403©ª1324841,62084.02792.59367.7413600.7854403.11204.182.504
#9, 1112.8173.684.02792.57943.1229,310©ª8221.731,7735,04584.02792.58377.6314655.1643965.5695.366.675
#10, 116.418084.02792.58377.6114,65516,755
Total Quantity and Shell Weight821,264,251kg362.8 (m)627.5 (m)881264251.125000.001963.496
Total Site Weleding length (m)990.3 (m)
myEQid[tid] = [ 5 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 11,000 (m), Material SA537-CL2, HEAD TYPE : WATER MELON
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0151540.02879.88639.417,42217,27940.02879.88639.437421.6022264.81610.9170.907
#2, 0304540.02879.88434.5214,843©ª7778.224,436
#3, 39013540.52879.888301285,457©ª11000103,67340.52879.88830127121.3985456.77778.18268.795
#4, 63016540.52879.88434.5215,029©ª7778.224,43640.52879.88639.437514.3722543.11610.9170.907
#5, 61518040.52879.88639.417,51417,279
Total Quantity and Shell Weight18130,265kg83.4 (m)103.7 (m)18130264.611000.00410.609
Total Site Weleding length (m)187.1 (m)
myEQid[tid] = [ 2 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 16,840 (m), Material SA516-70, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0101020.52939.18817.413,96217,63520.52939.18817.433961.9211885.81128.0773.859
#2, 0203020.52939.17807.827,924©ª842031,2316,330
#3, 3205020.52939.110131.8413,721©ª12900.240,52720.52939.19321.843430.2413720.91879.6685.263
#4, 4166621.08055.12351.3617,334©ª15384.148,33114,10821.026858817.462889.0017334.01987.55105.150
#5, 56413022.52939.19521.51882,575©ª16840169,29422.52939.19521.5184587.5082575.08836.99467.516
#6, 82015023.02939.110131.8415,394©ª12900.240,52723.02939.19121.843848.5615394.21879.6685.263
#7, 92017023.02939.17807.828,890©ª842031,2316,33023.02939.18817.434445.0813335.21128.0773.859
#8, 91018023.02939.18817.414,44517,635
Total Quantity and Shell Weight38154,245kg227.1 (m)196.1 (m)38154245.216840.00890.91
Total Site Weleding length (m)423.2 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 15,650 (m), Material SA516-70, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0101026.52731.48194.314,42316,38926.52731.48194.334423.2413269.71048.3563.789
#2, 0203026.52731.47256.128,846©ª782529,0245,883
#3, 3205026.52731.49415.8415,319©ª11988.637,66326.52731.48677.243829.6915318.81746.8473.639
#4, 4166626.57485.92185.2618,892©ª1429744,91513,11126.52495.38194.363148.6018891.61847.190.814
#5, 56413026.52731.48848.61883,996©ª15650157,33126.52731.48848.6184666.4283995.58212.52403.776
#6, 82015026.52731.49415.8415,319©ª11988.637,66326.52731.48477.243829.6915318.81746.8473.639
#7, 92017026.52731.47256.128,846©ª782529,0245,88326.52731.48194.334423.2413269.71048.3563.789
#8, 91018026.52731.48194.314,42316,389
Total Quantity and Shell Weight38160,064kg211.1 (m)182.2 (m)3816006415650.00769.446
Total Site Weleding length (m)393.3 (m)
myEQid[tid] = [ 4 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 12,000 (m), Material SA553-TYPE1, HEAD TYPE : FOOT BALL
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0101013.52094.46283.211,32512,56613.52094.46283.231324.863974.6803.8537.505
#2, 0203013.52094.45563.822,650©ª600022,2554,511
#3, 3205013.52094.47219.844,588©ª9192.528,87913.52094.46700.141147.024588.11339.4243.294
#4, 48013013.52692.88527.91430,817©ª12000117,28613.52692.88527.9142201.1830816.67713.46290.791
#5, 72015013.52094.47219.844,588©ª9192.528,87913.52094.46500.141147.024588.11339.4243.294
#6, 82017013.52094.45563.822,650©ª600022,2554,51113.52094.46283.231324.863974.6803.8537.505
#7, 81018013.52094.46283.211,32512,566
Total Quantity and Shell Weight2847,942kg127.4 (m)126.3 (m)2847941.912000.00452.389
Total Site Weleding length (m)253.7 (m)
myEQid[tid] = [ 3 ]
CalcRpt[tid][0].length() = [10] Bytes

1. Shell Plate ÇöÀå ¿ëÁ¢±æÀÌ °è»ê, Tank Dia. D = 9,000 (m), Material SA553-TYPE1, HEAD TYPE : WATER MELON
Weight Summary and SITE Welding LengthStrength Calculation Result, sWt[][][]
No.
Each
Angle
¥è, deg
Sum
Angle
¥õ, deg
Shell
Thk
mm
Shell
Width
mm
Shell
Length
mm
Qty
SHT
Net
Weight
kg
¼öÆò¿ëÁ¢ºÎ
´Ü¸é°æ
©ªD, mm
¼öÆò¿ëÁ¢
hWeld
L=©ªD,mm
¼öÁ÷¿ëÁ¢
vWeld
L, mm
Shell
Thk
mm
Width
mm
Length
mm
Qty
Sht
Unit WT
kg/sht
Net
Weight
kg
°¢´Ü
³ôÀÌ
mm
Ç¥¸éÀû
A=¥ðD*m
(m©÷)
#1, 0151511.02356.27068.611,36614,13711.02356.27068.631366.264098.81318.0247.467
#2, 0304511.02356.2690122,733©ª636419,993
#3, 39013511.02827.47294.31015,538©ª900070,68611.02827.47294.3101553.7615537.66363.96179.937
#4, 63016511.02356.2690122,733©ª636419,99311.02356.27068.631366.264098.81318.0247.467
#5, 61518011.02356.27068.611,36614,137
Total Quantity and Shell Weight1623,735kg68.3 (m)70.7 (m)1623735.19000.00274.871
Total Site Weleding length (m)138.9 (m)
myEQid[tid] = [ 2 ]
CalcRpt[tid][0].length() = [10] Bytes
1. CAPACITY CALCULATION
ÅÊÅ© °øĪ ¹× ÀúÀå¿ë·®ÇÏÁßÁ¶°Ç (Loading Data)
NoTNOLiquid
Name
SGDDLLVnomVstoVhilvRatioÅÊÅ©
Ç¥¸éÀû
4.Empty
Steel
5,ÀúÀå
¾×ü
6.¿îÀü
Áß·®
7.¼ö¾Ð
¼öÁß·®
8.¼ö¾Ð
Å×½ºÆ®Áß·®
mmmm£í©ø£í©ø£í©ø(%)m2Ton
1SK-01LH20.07114,10011,3391467.761320.97146.810 (%)624.58169.1993.79262.981467.761636.95
2SK-02LH20.64917,10014,5002618.12454.93163.176.2 (%)918.63535.661593.252128.912618.13153.77
3T-3208(3)Crude C40.62518,00014,5003053.632752.17301.469.9 (%)1017.88347.671720.12067.773053.633401.29
4T-3213(3)HP Petrochemical0.59618,00014,5003053.632752.17301.469.9 (%)1017.88347.671640.291987.963053.633401.29
5TKKMixed C40.625,00024,0008181.238143.0138.220.5 (%)1963.51366.214885.816252.018181.239547.44
6¾ËÁ¦¸®LPG0.53611,0007,600696.91538.33158.5822.8 (%)380.13135.39288.54423.93696.91832.3
7·Ôµ¥ G1C40.64616,84013,4802500.492241.58258.9110.4 (%)890.91178.671448.061626.732500.492679.16
8¸»·¹À̽þÆ1.3 BUTADIENE0.621515,65014,0802006.971950.4356.542.8 (%)769.45180.231212.191392.422006.972187.21
9SN2388LNG FUEL0.512,00010,740904.78876.9527.833.1 (%)452.3955.12438.47493.6904.78959.9
10SN2345LNG FUEL0.59,0008,070381.7370.3211.383 (%)254.4726.5185.16211.66381.7408.2

°ø°£¿ëÀûºñ(%) = °ø°£¿ëÀû / °øĪ¿ë·® * 100
Ratio of vapour Space, vRatio = Vhil / Vnom * 100(%)
uAry[1][3] = [ 0 | kg/cm©÷ | ÀÔ·Â ¾Ð·Â´ÜÀ§ (Pressue Input Unit) = kg/cm©÷ | ]
uAry[1][3].substring(0,1).trim() = [0]
uid = [0]
cAry.length = [36] cAry[0].length = [12]
sph.MYANG_SET();
sph.CODE_CALC( );
DESIGN DATA AND MATERIAL LIST
No.F0F1F2F3F4F5F6F7F8F9F10F11F12F13F14F15F16F17F18F19F20F21F22F23F24F25F26F27F28F29F30F31F32F33F34Cylindrical Shell
No.TNOCODECONTENTSGDiCAHTHHLLPiPeMDMTDTEMPCQTYMSGMATLSdgtReq
Used
Thk
6Roark
tRoark
1_ASME
tASME
td_2
tTest
td_3
tMAWP
td_5
tMAP
td_5
tVacuum
Shell
Qty
Net
Weight
Ton
Column
Qty
Tank Height
BASE to EQ. Line
(mm)
Upp. Colume
Height(mm)
Low. Colume
Height(mm)
Column
PCD
mm
BRACE
ºÎÂø°¢µµ
(o)deg.
Column
Size
Shell
°¢µµ
ºÐÇÒ¼ö
Spherical
Top ~ Btm
µÎ²²(mm)
Shell matl id, Sd
MPa
Cyl.
td
(mm)
Cyl.
tt
(mm)
Cyl.
tt(MAWP)
(mm)
Cyl.
tt(MAP)
(mm)
1SK-01DIV. 1LH20.071141000120001133911.6331.033227-15708OKSA240-316L115.0030 ~ 3329.3429.3731.031.831.8120.4930156.0958 EA10050302070301378036.8745©ª 711.2x7.62t1030 ~ 33matid=14, Sd= 138.0 MPa, G558.9862.1863.8163.82
2SK-02DIV. 1LH20.649171003.0115501450018.01.033227-157010µÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!SA516-60118.0068 ~ 71.570.3270.4253.2253.8356.2727.4946505.44510 EA11550358079701672032.9544©ª 863.6x9.65t1268 ~ 71.5matid=1, Sd= 118.0 MPa, 138.92106.94108.16113.08
3T-3208(3)DIV. 2Crude C40.625180003.2120001450018.01.033227-157010OKSA537-CL2230.0039 ~ 40.539.4939.5627.2427.7930.4426.6946318.23110 EA12000370083001760033.2354©ª 863.6x9.65t1239 ~ 40.5matid=6, Sd= 230.0 MPa, t ¡Â 64t76.0754.5655.6760.99
4T-3213(3)DIV. 2HP Petrochemical0.596180003.2120001450018.01.033227-157010OKSA537-CL2230.0039 ~ 40.539.4139.4827.2427.8430.4426.6946318.23110 EA12000370083001760033.2354©ª 863.6x9.65t1239 ~ 40.5matid=6, Sd= 230.0 MPa, t ¡Â 64t75.9154.5655.7760.99
5TKKDIV. 2Mixed C40.6250003.0155002400017.91.05-108714µÎ²²64mmÃÊ°úSd È®ÀÎÇÊ¿ä!SA516-65148.4978 ~ 8482.8583.1172.1372.8775.5635.96881,264.25114 EA155004730107702453026.8767©ª 1066.8x15.09t1378 ~ 84matid=2, Sd= 148.486 MPa, 163.72144.68146.17151.59
6¾ËÁ¦¸®DIV. 1LPG0.536110001.59000760021.92391.05-461006OKSA537-CL2158.0040 ~ 40.539.6339.6821.3921.8422.7717.0118130.2656 EA8500245060501074041.5924©ª 558.8x6.35t840 ~ 40.5matid=6, Sd= 158.0 MPa, t ¡Â 64t78.3942.9043.8045.68
7·Ôµ¥ G1DIV. 1C40.646168401.511420134806.00.517-158010OKSA516-70138.0020.5 ~ 2322.0622.0716.7417.4518.6818.5538154.2459 EA11420358078401643035.6314©ª 863.6x9.65t1120.5 ~ 23matid=3, Sd= 138.0 MPa, 42.7433.5234.9537.42
8¸»·¹À̽þÆDIV. 11.3 BUTADIENE0.6215156503.015350140806.01.033227-196810OKSA516-70138.0026.5 ~ 26.522.1222.1315.3618.7122.8825.4238160.0649 EA10825338074451526035.0319©ª 812.8x8.74t1126.5 ~ 26.5matid=3, Sd= 138.0 MPa, 41.3630.7637.4745.82


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : SK-01ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(1/10) Tank No. : [SK-01] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 14100 mm, DLL = 11339 mm, CA = 0 mm, SG = 0.071, Pg = 1140.808 kPa, Pe = 101.325 kPa
, SA240-316L matid=14, Sd= 138.0 MPa, St= 184.5 MPa, Thick Limit : G5
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o14100.029.1429.1629.1629.1720.4930.0#133.0oSA240-316L30.52707.08121.035,00015,001typ=0
11.0o11.0o13970.529.1429.1629.1829.1920.4930.0typ=4
22.0o33.0o12962.629.1429.1629.3729.3820.4930.5typ=4
222.0o55.0o11093.729.1429.1729.7229.7320.4930.5#222.0oSA240-316L30.52707.08367.144,22116,883typ=3
335.0o90.0o7050.029.1729.2430.4830.4920.4932.0#370.0oSA240-316L32.02768.58713.2165,62489,991typ=1
35.0o125.0o3006.329.2929.3131.2431.2520.4932.0typ=4
422.0o147.0o1137.429.3229.3531.5931.6020.4932.5#422.0oSA240-316L32.52707.08167.144,49817,990typ=3
522.0o169.0o129.529.3429.3631.7831.7820.4933.0#533.0oSA240-316L33.02707.08121.035,41016,230typ=2
11.0o180.0o0.029.3429.3731.8031.8120.4933.0typ=4
Sub-Total30Sht156,095kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO102]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : SK-02ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(2/10) Tank No. : [SK-02] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 17100 mm, DLL = 14500 mm, CA = 3 mm, SG = 0.649, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA516-60 matid=1, Sd= 118.0 MPa, St= 198.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o17100.066.9767.0750.2052.6527.4968.0#127.0oSA516-6068.02686.18058.2310,97632,929typ=0
9.0o9.0o16994.766.9767.0750.2252.6727.4968.0typ=4
18.0o27.0o16168.166.9767.0750.4052.8427.4968.0typ=4
218.0o45.0o14595.866.9767.0750.7353.1827.4968.0#218.0oSA516-6068.02686.18750.049,72138,884typ=3
314.5o59.5o12889.467.3567.4451.0953.5427.4968.5#314.5oSA516-6068.52314.48953.568,21549,291typ=3
430.5o90.0o8550.068.1268.4552.0154.4627.4970.5#461.0oSA516-6070.52686.19202.82012,901258,029typ=1
30.5o120.5o4210.669.3569.4552.9355.3827.4970.5typ=4
514.5o135.0o2504.269.7469.8553.2955.7427.4971.0#514.5oSA516-6071.02314.48953.568,51551,089typ=3
618.0o153.0o931.970.1070.2153.6356.0827.4971.0#618.0oSA516-6071.02686.18550.0410,15040,599typ=3
718.0o171.0o105.370.2970.4053.8156.2527.4971.5#727.0oSA516-6071.52686.18058.2311,54134,624typ=2
9.0o180.0o0.070.3270.4253.8356.2727.4971.5typ=4
Sub-Total46Sht505,445kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO103]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3208(3)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(3/10) Tank No. : [T-3208(3)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.625, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.037.7537.8225.7728.4226.6939.0#127.0oSA537-CL239.02827.48482.336,97520,926typ=0
9.0o9.0o17889.237.7537.8225.7828.4426.6939.0typ=4
18.0o27.0o17019.137.7537.8225.8828.5326.6939.0typ=4
218.0o45.0o15364.037.7537.8226.0728.7226.6939.0#218.0oSA537-CL239.02827.49200.046,17824,710typ=3
314.5o59.5o13567.837.8637.9326.2728.9226.6939.0#314.5oSA537-CL239.02436.29424.865,18331,095typ=3
430.5o90.0o9000.038.3038.4826.7829.4326.6940.0#461.0oSA537-CL240.02827.49681.9208,111162,216typ=1
30.5o120.5o4432.238.9639.0327.2929.9526.6940.0typ=4
514.5o135.0o2636.039.1739.2427.5030.1526.6940.0#514.5oSA537-CL240.02436.29424.865,31531,892typ=3
618.0o153.0o980.939.3739.4427.6830.3326.6940.5#618.0oSA537-CL240.52827.49000.046,41525,661typ=3
718.0o171.0o110.839.4839.5527.7830.4326.6940.5#727.0oSA537-CL240.52827.48482.337,24421,731typ=2
9.0o180.0o0.039.4939.5627.7930.4426.6940.5typ=4
Sub-Total46Sht318,231kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO104]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : T-3213(3)ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(4/10) Tank No. : [T-3213(3)] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 18000 mm, DLL = 14500 mm, CA = 3.2 mm, SG = 0.596, Pg = 1765.197 kPa, Pe = 101.325 kPa
, SA537-CL2 matid=6, Sd= 230.0 MPa, St= 394.25 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o18000.037.7537.8225.8228.4226.6939.0#127.0oSA537-CL239.02827.48482.336,97520,926typ=0
9.0o9.0o17889.237.7537.8225.8328.4426.6939.0typ=4
18.0o27.0o17019.137.7537.8225.9328.5326.6939.0typ=4
218.0o45.0o15364.037.7537.8226.1228.7226.6939.0#218.0oSA537-CL239.02827.49200.046,17824,710typ=3
314.5o59.5o13567.837.8637.9226.3228.9226.6939.0#314.5oSA537-CL239.02436.29424.865,18331,095typ=3
430.5o90.0o9000.038.2738.4526.8329.4326.6940.0#461.0oSA537-CL240.02827.49681.9208,111162,216typ=1
30.5o120.5o4432.238.9038.9727.3429.9526.6940.0typ=4
514.5o135.0o2636.039.1139.1827.5430.1526.6940.0#514.5oSA537-CL240.02436.29424.865,31531,892typ=3
618.0o153.0o980.939.3039.3727.7330.3326.6940.5#618.0oSA537-CL240.52827.49000.046,41525,661typ=3
718.0o171.0o110.839.4039.4727.8330.4326.6940.5#727.0oSA537-CL240.52827.48482.337,24421,731typ=2
9.0o180.0o0.039.4139.4827.8430.4426.6940.5typ=4
Sub-Total46Sht318,231kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO105]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : TKKÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(5/10) Tank No. : [TKK] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 2, Di = 25000 mm, DLL = 24000 mm, CA = 3 mm, SG = 0.6, Pg = 1755.39 kPa, Pe = 102.97 kPa
, SA516-65 matid=2, Sd= 148.486 MPa, St= 228.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o25000.076.9177.1266.1168.8035.9678.0#119.2oSA516-6578.02792.58377.6313,60840,825typ=0
6.4o6.4o24922.176.9177.1266.1468.8335.9678.0typ=4
12.8o19.2o24304.776.9177.1266.3068.9935.9678.0typ=4
212.8o32.0o23100.677.1377.3566.6369.3235.9678.5#212.8oSA516-6578.52792.59567.7412,71050,841typ=3
39.5o41.5o21862.077.4477.6666.9669.6535.9678.5#39.5oSA516-6578.51858.68726.696,66159,948typ=3
445.5o87.0o13154.279.6679.8369.3272.0135.9681.0#445.5oSA516-6581.02801.19970.02815,531434,861typ=3
53.0o90.0o12500.079.4179.9969.4972.1835.9683.5#551.5oSA516-6583.52805.011335.62818,416515,641typ=1
48.5o138.5o3138.082.0882.3372.0274.7235.9683.5typ=4
69.5o148.0o1899.482.3882.6472.3675.0535.9683.5#69.5oSA516-6583.51858.68726.697,08563,767typ=3
712.8o160.8o695.382.6882.9372.6875.3735.9684.0#712.8oSA516-6584.02792.59367.7413,60154,403typ=3
812.8o173.6o77.982.8383.0972.8575.5435.9684.0#819.2oSA516-6584.02792.58377.6314,65543,965typ=2
6.4o180.0o0.082.8583.1172.8775.5635.9684.0typ=4
Sub-Total88Sht1,264,251kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO106]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : ¾ËÁ¦¸®ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(6/10) Tank No. : [¾ËÁ¦¸®] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 11000 mm, DLL = 7600 mm, CA = 1.5 mm, SG = 0.536, Pg = 2150 kPa, Pe = 102.97 kPa
, SA537-CL2 matid=6, Sd= 158.0 MPa, St= 373.5 MPa, Thick Limit : t ¡Â 64t
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o11000.038.9338.9821.0421.9817.0140.0#145.0oSA537-CL240.02879.88639.437,42222,265typ=0
15.0o15.0o10812.638.9338.9821.0521.9917.0140.0typ=4
30.0o45.0o9389.138.9338.9821.1622.0917.0140.0typ=4
245.0o90.0o5500.039.1839.1721.4422.3717.0140.5#290.0oSA537-CL240.52879.88739.4127,12185,457typ=1
45.0o135.0o1610.939.4839.5321.7222.6617.0140.5typ=4
330.0o165.0o187.439.6139.6621.8222.7617.0140.5#345.0oSA537-CL240.52879.88639.437,51422,543typ=2
15.0o180.0o0.039.6339.6821.8422.7717.0140.5typ=4
Sub-Total18Sht130,265kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO107]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : ·Ôµ¥ G1ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(7/10) Tank No. : [·Ôµ¥ G1] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 16840 mm, DLL = 13480 mm, CA = 1.5 mm, SG = 0.646, Pg = 588.399 kPa, Pe = 50.7 kPa
, SA516-70 matid=3, Sd= 138.0 MPa, St= 234.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o16840.019.4519.4614.4815.7118.5520.5#130.0oSA516-7020.52939.18817.433,96211,886typ=0
10.0o10.0o16712.119.4519.4614.5015.7418.5520.5typ=4
20.0o30.0o15711.919.4519.4614.6815.9118.5520.5typ=4
220.0o50.0o13832.319.4519.4615.0116.2418.5520.5#220.0oSA516-7020.52939.19321.843,43013,721typ=3
316.0o66.0o11844.719.7819.7815.3616.5918.5521.0#316.0oSA516-7021.02685.08817.462,88917,334typ=3
424.0o90.0o8420.020.6820.4415.9717.2018.5522.5#464.0oSA516-7022.52939.19505.2184,58882,575typ=1
40.0o130.0o3007.721.4921.4916.9218.1518.5522.5typ=4
520.0o150.0o1128.121.8421.8517.2518.4918.5523.0#520.0oSA516-7023.02939.19121.843,84915,394typ=3
620.0o170.0o127.922.0322.0517.4318.6618.5523.0#630.0oSA516-7023.02939.18817.434,44513,335typ=2
10.0o180.0o0.022.0622.0717.4518.6818.5523.0typ=4
Sub-Total38Sht154,245kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO108]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : ¸»·¹À̽þÆÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(8/10) Tank No. : [¸»·¹À̽þÆ] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 15650 mm, DLL = 14080 mm, CA = 3 mm, SG = 0.6215, Pg = 588.399 kPa, Pe = 101.325 kPa
, SA516-70 matid=3, Sd= 138.0 MPa, St= 234.0 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o15650.019.6919.7016.1420.3125.4226.5#130.0oSA516-7026.52731.48194.334,42313,270typ=0
10.0o10.0o15531.119.6919.7016.1620.3325.4226.5typ=4
20.0o30.0o14601.619.6919.7016.3120.4825.4226.5typ=4
220.0o50.0o12854.819.9019.9116.6020.7725.4226.5#220.0oSA516-7026.52731.48677.243,83015,319typ=3
316.0o66.0o11007.720.2320.2316.9021.0725.4226.5#316.0oSA516-7026.52495.38194.363,14918,892typ=3
424.0o90.0o7825.020.9920.7817.4221.5925.4226.5#464.0oSA516-7026.52731.48840.6184,66683,996typ=1
40.0o130.0o2795.221.6421.6518.2522.4225.4226.5typ=4
520.0o150.0o1048.421.9421.9518.5322.7025.4226.5#520.0oSA516-7026.52731.48477.243,83015,319typ=3
620.0o170.0o118.922.1022.1118.6922.8625.4226.5#630.0oSA516-7026.52731.48194.334,42313,270typ=2
10.0o180.0o0.022.1222.1318.7122.8825.4226.5typ=4
Sub-Total38Sht160,064kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO109]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : SN2388ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(9/10) Tank No. : [SN2388] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 12000 mm, DLL = 10740 mm, CA = 1 mm, SG = 0.5, Pg = 497.8 kPa, Pe = 44.13 kPa
, SA553-TYPE1 matid=0, Sd= -99.999 MPa, St= -99.999 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o12000.00.000.000.000.0012.3013.5#130.0oSA553-TYPE113.52094.46283.231,3253,975typ=0
10.0o10.0o11908.80.000.000.000.0012.3013.5typ=4
20.0o30.0o11196.20.000.000.000.0012.3013.5typ=4
220.0o50.0o9856.70.000.000.000.0012.3013.5#220.0oSA553-TYPE113.52094.46700.141,1474,588typ=3
340.0o90.0o6000.00.000.000.000.0012.3013.5#380.0oSA553-TYPE113.52692.88477.6142,20130,817typ=1
40.0o130.0o2143.30.000.000.000.0012.3013.5typ=4
420.0o150.0o803.80.000.000.000.0012.3013.5#420.0oSA553-TYPE113.52094.46500.141,1474,588typ=3
520.0o170.0o91.20.000.000.000.0012.3013.5#530.0oSA553-TYPE113.52094.46283.231,3253,975typ=2
10.0o180.0o0.00.000.000.000.0012.3013.5typ=4
Sub-Total28Sht47,942kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO110]


S-Tank Engineering
Spherical Tank Calculation   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : SN2345ÀÚÀç Áß·®Ç¥Rev. No.[AAA4] 

(10/10) Tank No. : [SN2345] ÀÚÀç Áß·®Ç¥ CALC_SPH_BODY_WEIGHT()
Design Code : Div. 1, Di = 9000 mm, DLL = 8070 mm, CA = 1 mm, SG = 0.5, Pg = 497.8 kPa, Pe = 44.13 kPa
, SA553-TYPE1 matid=0, Sd= -99.999 MPa, St= -99.999 MPa,
Calculation Result of Required Thickness, (mm)Used Thickness, (mm)
No.Each
Angle
Sum.
Angle
Hmm1)tShear
Theory
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
thick.
PNoSEG.
Angle
MatltUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
Remark
Pdeg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
10.0o0.0o9000.00.000.000.000.0010.0011.0#145.0oSA553-TYPE111.02356.27068.631,3664,099typ=0
15.0o15.0o8846.70.000.000.000.0010.0011.0typ=4
30.0o45.0o7682.00.000.000.000.0010.0011.0typ=4
245.0o90.0o4500.00.000.000.000.0010.0011.0#290.0oSA553-TYPE111.02827.47168.6101,55415,538typ=1
45.0o135.0o1318.00.000.000.000.0010.0011.0typ=4
330.0o165.0o153.30.000.000.000.0010.0011.0#345.0oSA553-TYPE111.02356.27068.631,3664,099typ=2
15.0o180.0o0.00.000.000.000.0010.0011.0typ=4
Sub-Total16Sht23,735kg
[¿©±â¿¡ ÇöÀå ¿ëÁ¢ ±æÀ̸¦ ³Ö´Â´Ù.INSERTTANKNO111]

CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. SK-01Rev. No.[AAA4] 
Design Code : Div. 1, Di = 14100 mm, CA = 0 mm, SG = 0.071, Pg= 11.633 kg/cm2(=1140.808 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1525.6 kPa
Material : SA240-316L, EXTERNAL CHART NO. [HA-2], DTEMP = 70 ¡É, Sd = 138 MPa, St = 184.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 515 MPa, Fy = 205 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o14100.0001140.81140.829.1429.1630.00.7+0.141.17351.17351.0¥òeq = 134.0441 / 10
P111.0o11.0o13970.5001140.829.1429.1630.00.7+0.111.17351.17351.0¥òeq = 134.0442 / 10
P222.0o33.0o12962.6001140.829.1429.1630.50.7+0.421.17351.17351.0¥òeq = 134.0443 / 10
P322.0o55.0o11093.7245.30.21141.029.1429.1730.50.7+0.071.17331.17351.0¥òeq = 134.0644 / 10
P435.0o90.0o7050.04289.03.01143.829.1729.2432.00.7+0.321.19001.19301.0¥òeq = 134.25 / 10
35.0o125.0o3006.38332.75.81146.629.2929.3132.00.7+0.061.22631.23211.0¥òeq = 132.5177 / 10
P522.0o147.0o1137.410201.67.11147.929.3229.3532.50.7+0.211.24451.25161.0¥òeq = 132.6688 / 10
P622.0o169.0o129.511209.57.81148.629.3429.3633.00.7+0.521.24381.25161.0¥òeq = 132.7499 / 10
P711.0o180.0o011339.07.91148.729.3429.3733.00.7+0.501.24371.25161.17331.17351.0¥òeq = 132.75910 / 10
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.1408MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.1733MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.1735MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. SK-01Rev. No.[AAA4] 
Design Code : Div. 1, Di = 14100 mm, CA = 0 mm, SG = 0.071, Pg= 11.633 kg/cm2(=1140.808 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1525.3 kPa
Material : SA240-316L, EXTERNAL CHART NO. [HA-2], DTEMP = 70 ¡É, Sd = 138 MPa, St = 184.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 515 MPa, Fy = 205 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o14100.0001525.31525.328.3529.1629.1730.01.17351.1735¥òeq = 174.841 / 10
P111.0o11.0o13970.5129.51.31526.628.3829.1829.1930.01.17351.1735¥òeq = 175.0352 / 10
P222.0o33.0o12962.61137.411.21536.528.5729.3729.3830.51.17351.1735¥òeq = 176.5563 / 10
P322.0o55.0o11093.73006.329.51554.828.9229.7229.7330.51.17331.1735¥òeq = 175.5924 / 10
P435.0o90.0o7050.07050.069.11594.429.6730.4830.4932.01.19001.1930¥òeq = 176.0085 / 10
35.0o125.0o3006.311093.7108.81634.130.4331.2431.2532.01.22631.2321¥òeq = 176.2367 / 10
P522.0o147.0o1137.412962.6127.11652.430.7831.5931.6032.51.24451.2516¥òeq = 178.7828 / 10
P622.0o169.0o129.513970.5137.01662.330.9731.7831.7833.01.24381.2516¥òeq = 176.6389 / 10
P711.0o180.0o014100.0138.31663.631.0031.8031.8133.01.24371.2516¥òeq = 176.81310 / 10
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.1408at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.483015.1229
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.1733at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.525315.5537
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.1735at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.525615.5568


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. SK-01Rev. No.[AAA4] 
Design Code : Div. 1, Di = 14100 mm, CA = 0 mm, SG = 0.071, Pg= 11.633 kg/cm2(=1140.808 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1525.3 kPa
Material : SA240-316L, EXTERNAL CHART NO. [HA-2], DTEMP = 70 ¡É, Sd = 138 MPa, St = 184.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 515 MPa, Fy = 205 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o14100.00014100.00030.0030.01.17351.1735216.59221 / 10
P111.0o11.0o13970.50013970.5129.51.330.0030.01.17351.1735216.59222 / 10
P222.0o33.0o12962.60012962.61137.411.230.5030.51.17351.1735216.59223 / 10
P322.0o55.0o11093.7245.30.211093.73006.329.530.5030.51.17331.1735216.59224 / 10
P435.0o90.0o7050.04289.03.07050.07050.069.131.5031.51.19001.1930223.83845 / 10
35.0o125.0o3006.38332.75.83006.311093.7108.832.0032.01.22631.2321238.68527 / 10
P522.0o147.0o1137.410201.67.11137.412962.6127.132.5032.51.24451.2516246.28588 / 10
P622.0o169.0o129.511209.57.8129.513970.5137.033.0033.01.24381.2516246.28589 / 10
P711.0o180.0o011339.07.9014100.0138.333.0033.01.24371.2516246.285810 / 10
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.1408at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.483015.1229
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.1733at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =1.525315.5537
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.1735at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.525615.5568
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA240-316L
Maximum. Allowable External PressureMAEP =216.59222.2086HA-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=216.5922 kPa)
¡Ü Shell MaterialMATL =SA240-316L
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =205.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 184.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) HA-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 30.0 mm
Outside Radius of tank top headRo = 7080.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0005297
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.HA-2)Factor B =51.11577 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =216.5922 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. SK-01Rev. No.[AAA4] 
Design Code : Div. 1, Di = 14100 mm, CA = 0 mm, SG = 0.071, Pg= 11.633 kg/cm2(=1140.808 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1525.3 kPa
Material : SA240-316L, EXTERNAL CHART NO. [HA-2], DTEMP = 70 ¡É, Sd = 138 MPa, St = 184.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 515 MPa, Fy = 205 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o29.1429.229.1629.1720.4930.00.7+0.14#133.030.52707.08121.035,00015,0011 / 10
P111.0o11.0o29.1429.229.1829.1920.4930.00.7+0.122 / 10
P222.0o33.0o29.1429.229.3729.3820.4930.50.7+0.433 / 10
P322.0o55.0o29.1429.229.7229.7320.4930.50.7+0.08#222.030.52707.08367.144,22116,8834 / 10
P435.0o90.0o29.1729.230.4830.4920.4932.00.7+0.32#370.032.02768.58713.2165,62489,9915 / 10
35.0o125.0o29.2929.331.2431.2520.4932.00.7+0.067 / 10
P522.0o147.0o29.3229.431.5931.6020.4932.50.7+0.21#422.032.52707.08167.144,49817,9908 / 10
P622.0o169.0o29.3429.431.7831.7820.4933.00.7+0.52#533.033.02707.08121.035,41016,2309 / 10
P711.0o180.0o29.3429.431.8031.8120.4933.00.7+0.5010 / 10
], CalcRpt[i][1]=[Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 20.49 mm; Pe :101.32 kPa ¡Â Pa = 101.34 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003622; Factor_B = 34.968 MPa


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=14100 (cm), Sd=138 MPa, Pg=1.1408 (MPa), HT_UPPCOL = 30300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=19.755 (N-mm), N¥õ=1.299 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 14100mm1410.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7050mm705.0cm
4¡¡L = Design Liquid levelL = 11339mm1133.9cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 2,386,237N243328.5Kg
7¡¡S = Allowable Stress for the Design Condition SA240-316L, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.141MPa11.633Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.0710.071
10¡¡¥ã = Liquid Density¥ã = 6.962722E-7N/mm©ø71.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 711.2mm71.12cm
12¡¡N = Number of Support ColumnN = 8.0columns8columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.45406degree0.44426radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.52835degree0.91679radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99368760.9936876
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.14730291.1473029
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.42978720.4297872
20¡¡C5 = 22 / ¥õC5 = 0.86430230.8643023
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.42978720.4297872
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 4021.32N-mm41.006Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 19.755N-mm0.201Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 1.299N-mm0.013Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 4078.57N/mm4158.984Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 3970.24N/mm4048.518Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 29.37mm2.937cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 29.17mm2.917cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 132.0MPa1346.025Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 136,513,636N-mm1392.052¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 49,635,713N-mm506.143¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 68,787,406N-mm701.436¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 22,741,299N-mm231.897¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 50.254N/mm51.245Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 78,704,704N-mm802.565¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 42,262,031N-mm430.953¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 47,767,167mm©ø47.767¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 2,412,506,686mm©ø2412.507¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.3866E-52.3866E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.234945E-37.234945E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1540.419mm154.042cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 12.763N/mm13.015Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 7,281,323N-mm74248.835Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 3,668,962N-mm37413.001Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 570,493mm©ø5704.932cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 130,999,746mm©ø131.0¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 229.625mm22.963cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 454.717mm45.472cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 52.38N/mm53.413Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 36.603N/mm37.325Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 227,391N23187.4Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 5578.428N568.8Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6060.0mm606.0cm

piDeg=[25.454058240185077] piRad=[0.4442571242856232] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=14100 (cm), Sd=138 MPa, Pg=1.1408 (MPa), HT_UPPCOL = 30300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
014100.0001.14084021.324021.324021.32134.04 < OK 13829.1429.1630.00.022.870000
P11113970.5001.14084021.324021.324021.32134.04 < OK 13829.1429.1630.00.022.870000
P23312962.6001.14084021.324021.324021.32134.04 < OK 13829.1429.1630.00.022.870000
P35511093.7245.30.00021.1414021.321.190.024022.514021.34134.06 < OK 13829.1429.1730.00.032.850.2060.0030.0340.001
P4907050.04289.00.00301.14384021.3219.751.3050.2512.7652.3836.604078.573970.24134.20 < OK 13829.1729.2430.00.072.753.4250.2250.5710.038Column Attached Equator Plate
1253006.38332.70.00581.14664021.3216.4324.474037.754045.79132.52 < OK 13829.2929.3130.50.023.972.8484.2430.4750.707
P51471137.410201.60.00711.14794021.3223.6026.484044.924047.80132.67 < OK 13829.3229.3530.50.033.864.0924.590.6820.765
P6169129.511209.50.00781.14864021.3227.3527.674048.674048.99132.75 < OK 13829.3429.3630.50.023.814.7424.7980.790.8
P7180011339.00.00791.14874021.3227.8327.834049.154049.15132.76 < OK 13829.3429.3730.50.033.804.8254.8250.8040.804


S-Tank Engineering
Spherical Tank Calculation [1 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=14100 (cm), Syt=184.5 MPa, MAWP=1.48304 (MPa), HT_UPPCOL = 30200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=406.179 (N-mm), N¥õ=81.236 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 14100mm1410.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7050mm705.0cm
4¡¡L = Hydrostatic-test Water LevelL = 14100mm1410.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 15,932,453N1624658.1Kg
7¡¡S = Allowable Stress for the Design Condition SA240-316L, Sd = 184.5MPaS = 184.5MPa1881.376Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.141MPa11.633Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 711.2mm71.12cm
12¡¡N = Number of Support ColumnN = 8.0columns8columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.36408degree0.44269radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99386350.9938635
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.14351641.1435164
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.42836880.4283688
20¡¡C5 = 22 / ¥õC5 = 0.86736820.8673682
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.42836880.4283688
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 4021.32N-mm41.006Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 406.179N-mm4.142Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 81.236N-mm0.828Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 4679.22N/mm4771.476Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 3751.59N/mm3825.557Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 24.45mm2.445cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 23.37mm2.337cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 169.106MPa1724.401Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 911,475,571N-mm9294.464¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 332,575,174N-mm3391.323¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 459,280,420N-mm4683.357¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 152,283,480N-mm1552.859¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 337.87N/mm344.532Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 525,577,100N-mm5359.395¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 282,323,372N-mm2878.897¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 49,777,871mm©ø49.778¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 2,388,019,925mm©ø2388.02¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.3448E-52.3448E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.158993E-37.158993E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1535.153mm153.515cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 86.152N/mm87.851Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 48,636,057N-mm495.95¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 24,507,062N-mm249.902¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 564,538mm©ø5645.381cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 128,726,449mm©ø128.726¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 228.021mm22.802cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 451.571mm45.157cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 350.97N/mm357.89Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 244.936N/mm249.765Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,516,399N154629.6Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 36987.563N3771.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6040.0mm604.0cm

piDeg=[25.364084196882008] piRad=[0.4426867809886527] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=14100 (cm), Syt=184.5 MPa, MAWP=1.48304 (MPa), HT_UPPCOL = 30200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
014100.0001.14084021.324021.324021.32174.84 < OK 184.521.8021.8123.00.015.240000
P11113970.5129.50.00131.14214021.326.722.234028.044023.55175.04 < OK 184.521.8221.8323.00.015.130.0830.0270.0140.005
P23312962.61137.40.01121.1524021.3259.5519.084080.874040.40176.56 < OK 184.522.0122.0223.00.014.310.7330.2350.1220.039
P35511093.73006.30.02951.17034021.32160.5847.274181.904068.59175.59 < OK 184.522.3722.3723.54.831.9770.5820.3290.097
P4907050.07050.00.06911.20994021.32406.1881.24337.8786.15350.97244.944679.223751.59176.01 < OK 184.523.3723.1324.5-0.244.60510.8330.167Column Attached Equator Plate
1253006.311093.70.10881.24964021.32326.84440.154348.164461.47176.24 < OK 184.523.8823.8925.00.014.484.0235.4180.6710.903
P51471137.412962.60.12711.26794021.32427.86468.334449.184489.65178.78 < OK 184.524.2324.2425.00.013.105.2675.7650.8780.961
P6169129.513970.50.13701.27784021.32480.69485.184502.014506.50176.64 < OK 184.524.4124.4325.50.024.265.9175.9730.9860.995
P7180014100.00.13831.27914021.32487.42487.424508.744508.74176.81 < OK 184.524.4424.4525.50.014.176611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 30
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 156095.045
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 14100
MRA(sWt[tid][20][10])= 624.58
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =8Columns
2. gCol[tid][2] =Column ODOD =711.2mm
3. gCol[tid][3] =Column thkthk =7.62mm
4. gCol[tid][4] =Tank HeightHtank =10050mm
5. gCol[tid][5] =Upper Column HeightUCHT =3020mm
6. gCol[tid][6] =Lower Column HeightLCHT =7030mm
7. gCol[tid][7] =Column P.C.DPCD =13780mm
8. gCol[tid][8] =Brace AngleBRang =36.8745deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.23deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA240-316Lt30.5 ~ 32.5SHT30156.095190.436000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt32.5, t10¡¿2534¡¿3020SHT85.6566.222000,000000,0002
3LOWER COLUMN (PIPE)null¨ª711.2¡¿7.62t ¡¿ 7030LPCS87.4357.435000,000000,0003
4BRACE ( PIPE, ¥è= 36.8745 deg.)null¨ª0¡¿0t ¡¿ 8788LPCS16000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA240-316L(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA240-316LPLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL62169.186204.093000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. SK-02Rev. No.[AAA4] 
Design Code : Div. 1, Di = 17100 mm, CA = 3 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2328 kPa
Material : SA516-60, EXTERNAL CHART NO. [CS-2], DTEMP = 70 ¡É, Sd = 118 MPa, St = 198 MPa, Samb = 118 MPa, LSR = Samb/Sd = 1.0, Ft = 415 MPa, Fy = 220 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o17106.0001765.21765.266.9767.0768.00.7+0.231.79081.87401.0¥òeq = 116.1371 / 12
P19.0o9.0o17000.7001765.266.9767.0768.00.7+0.231.79081.87401.0¥òeq = 116.1372 / 12
P218.0o27.0o16173.8001765.266.9767.0768.00.7+0.231.79081.87401.0¥òeq = 116.1373 / 12
P318.0o45.0o14600.9001765.266.9767.0768.00.7+0.231.79081.87401.0¥òeq = 116.1374 / 12
P414.5o59.5o12894.01609.010.21775.467.3567.4468.50.7+0.361.79441.88771.0¥òeq = 115.9235 / 12
P530.5o90.0o8553.05950.037.91803.168.1268.4570.50.7+0.351.79421.91521.0¥òeq = 116.4236 / 12
30.5o120.5o4212.010291.065.51830.769.3569.4570.50.7+0.351.79411.94281.0¥òeq = 115.9968 / 12
P614.5o135.0o2505.111997.976.41841.669.7469.8571.00.7+0.451.79691.95651.0¥òeq = 115.8199 / 12
P718.0o153.0o932.213570.886.41851.670.1070.2171.00.7+0.091.78691.95651.0¥òeq = 116.44510 / 12
P818.0o171.0o105.314397.791.61856.870.2970.4071.50.7+0.401.79551.97031.0¥òeq = 115.92311 / 12
P99.0o180.0o014503.092.31857.570.3270.4271.50.7+0.381.79481.97031.78691.8741.0¥òeq = 115.96512 / 12
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.7869MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.8740MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. SK-02Rev. No.[AAA4] 
Design Code : Div. 1, Di = 17100 mm, CA = 3 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2323 kPa
Material : SA516-60, EXTERNAL CHART NO. [CS-2], DTEMP = 70 ¡É, Sd = 118 MPa, St = 198 MPa, Samb = 118 MPa, LSR = Samb/Sd = 1.0, Ft = 415 MPa, Fy = 220 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o17100.0002323.02323.049.5950.2052.6568.01.79081.8740¥òeq = 193.4931 / 12
P19.0o9.0o16994.7105.31.02324.049.6150.2252.6768.01.79081.8740¥òeq = 193.6062 / 12
P218.0o27.0o16168.1931.99.12332.149.7950.4052.8468.01.79081.8740¥òeq = 192.0353 / 12
P318.0o45.0o14595.82504.224.62347.650.1250.7353.1868.01.79081.8740¥òeq = 193.7174 / 12
P414.5o59.5o12889.54210.541.32364.350.4851.0953.5468.51.79441.8877¥òeq = 193.1155 / 12
P530.5o90.0o8550.08550.083.82406.851.4052.0154.4670.51.79421.9152¥òeq = 192.5956 / 12
30.5o120.5o4210.512889.5126.42449.452.3252.9355.3870.51.79411.9428¥òeq = 192.588 / 12
P614.5o135.0o2504.214595.8143.12466.152.6953.2955.7471.01.79691.9565¥òeq = 194.2559 / 12
P718.0o153.0o931.916168.1158.62481.653.0253.6356.0871.01.78691.9565¥òeq = 193.50910 / 12
P818.0o171.0o105.316994.7166.72489.753.2053.8156.2571.51.79551.9703¥òeq = 192.06311 / 12
P99.0o180.0o017100.0167.72490.753.2253.8356.2771.51.79481.9703¥òeq = 192.16612 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.294823.4000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.7869at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.323023.6880
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.8740at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =2.436224.8423


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. SK-02Rev. No.[AAA4] 
Design Code : Div. 1, Di = 17100 mm, CA = 3 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2323 kPa
Material : SA516-60, EXTERNAL CHART NO. [CS-2], DTEMP = 70 ¡É, Sd = 118 MPa, St = 198 MPa, Samb = 118 MPa, LSR = Samb/Sd = 1.0, Ft = 415 MPa, Fy = 220 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o17106.00017100.00065.0068.01.79081.8740624.92171 / 12
P19.0o9.0o17000.70016994.7105.31.065.0068.01.79081.8740624.92172 / 12
P218.0o27.0o16173.80016168.1931.99.165.0068.01.79081.8740624.92173 / 12
P318.0o45.0o14600.90014595.82504.224.665.0068.01.79081.8740624.92174 / 12
P414.5o59.5o12894.01609.010.212889.54210.541.365.5068.51.79441.8877631.55205 / 12
P530.5o90.0o8553.05950.037.98550.08550.083.866.5069.51.79421.9152644.89476 / 12
30.5o120.5o4212.010291.065.54210.512889.5126.467.5070.51.79411.9428658.34708 / 12
P614.5o135.0o2505.111997.976.42504.214595.8143.168.0071.01.79691.9565665.11429 / 12
P718.0o153.0o932.213570.886.4931.916168.1158.668.0071.01.78691.9565665.114210 / 12
P818.0o171.0o105.314397.791.6105.316994.7166.768.5071.51.79551.9703671.908811 / 12
P99.0o180.0o014503.092.3017100.0167.768.5071.51.79481.9703671.908812 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.294823.4000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.7869at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.323023.6880
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.8740at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =2.436224.8423
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA516-60
Maximum. Allowable External PressureMAEP =624.92176.3724CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=624.9217 kPa)
¡Ü Shell MaterialMATL =SA516-60
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =220.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 198.0 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =118.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =118.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 65.0 mm
Outside Radius of tank top headRo = 8618.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0009428
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-2)Factor B =82.85500 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =624.9217 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. SK-02Rev. No.[AAA4] 
Design Code : Div. 1, Di = 17100 mm, CA = 3 mm, SG = 0.649, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2323 kPa
Material : SA516-60, EXTERNAL CHART NO. [CS-2], DTEMP = 70 ¡É, Sd = 118 MPa, St = 198 MPa, Samb = 118 MPa, LSR = Samb/Sd = 1.0, Ft = 415 MPa, Fy = 220 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o66.9767.150.2052.6527.4968.00.7+0.23#127.068.02686.18058.2310,97632,9291 / 12
P19.0o9.0o66.9767.150.2252.6727.4968.00.7+0.232 / 12
P218.0o27.0o66.9767.150.4052.8427.4968.00.7+0.233 / 12
P318.0o45.0o66.9767.150.7353.1827.4968.00.7+0.23#218.068.02686.18750.049,72138,8844 / 12
P414.5o59.5o67.3567.451.0953.5427.4968.50.7+0.36#314.568.52314.48953.568,21549,2915 / 12
P530.5o90.0o68.1268.452.0154.4627.4970.50.7+0.35#461.070.52686.19202.82012,901258,0296 / 12
30.5o120.5o69.3569.452.9355.3827.4970.50.7+0.358 / 12
P614.5o135.0o69.7469.853.2955.7427.4971.00.7+0.45#514.571.02314.48953.568,51551,0899 / 12
P718.0o153.0o70.1070.253.6356.0827.4971.00.7+0.09#618.071.02686.18550.0410,15040,59910 / 12
P818.0o171.0o70.2970.453.8156.2527.4971.50.7+0.40#727.071.52686.18058.2311,54134,62411 / 12
P99.0o180.0o70.3270.453.8356.2727.4971.50.7+0.3812 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [1 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 0. SK-01Rev. No.[AAA4] 
Design Code : Div. 1, Di = 14100 mm, CA = 0 mm, SG = 0.071, Pg= 11.633 kg/cm©÷(=1140.808 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1525.3 kPa
Material : SA240-316L, EXTERNAL CHART NO. [HA-2], DTEMP = 70 ¡É, Sd = 138 MPa, St = 184.5 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 515 MPa, Fy = 205 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o29.1429.229.1629.1720.4930.00.7+0.14#133.030.52707.08121.035,00015,0011 / 10
P111.0o11.0o29.1429.229.1829.1920.4930.00.7+0.122 / 10
P222.0o33.0o29.1429.229.3729.3820.4930.50.7+0.433 / 10
P322.0o55.0o29.1429.229.7229.7320.4930.50.7+0.08#222.030.52707.08367.144,22116,8834 / 10
P435.0o90.0o29.1729.230.4830.4920.49TD90USED0.7+0.32#370.032.02768.58713.2165,62489,9915 / 10
35.0o125.0o29.2929.331.2431.2520.4932.00.7+0.067 / 10
P522.0o147.0o29.3229.431.5931.6020.4932.50.7+0.21#422.032.52707.08167.144,49817,9908 / 10
P622.0o169.0o29.3429.431.7831.7820.4933.00.7+0.52#533.033.02707.08121.035,41016,2309 / 10
P711.0o180.0o29.3429.431.8031.8120.4933.00.7+0.5010 / 10
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 27.49 mm; Pe :101.32 kPa ¡Â Pa = 101.33 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003569; Factor_B = 35.49 MPa


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=17100 (cm), Sd=118 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 35600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=297.768 (N-mm), N¥õ=26.124 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 17100mm1710.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 8553mm855.3cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,680,822N2108856.9Kg
7¡¡S = Allowable Stress for the Design Condition SA516-60, Sd = 118MPaS = 118.0MPa1203.265Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6490.649
10¡¡¥ã = Liquid Density¥ã = 6.364516E-6N/mm©ø649.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.60589degree0.42945radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 45.91998degree0.80145radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99532150.9953215
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11149741.1114974
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41637430.4163743
20¡¡C5 = 22 / ¥õC5 = 0.89409480.8940948
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41637430.4163743
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7548.878N-mm76.977Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 297.768N-mm3.036Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 26.124N-mm0.266Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8027.9N/mm8186.18Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7265.33N/mm7408.575Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 70.42mm7.042cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 68.12mm6.812cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 112.174MPa1143.856Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 915,180,149N-mm9332.24¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 341,743,048N-mm3484.809¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 459,859,924N-mm4689.266¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 160,823,155N-mm1639.94¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 245.842N/mm250.689Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 531,051,939N-mm5415.223¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 278,953,935N-mm2844.539¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 154,449,865mm©ø154.45¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,906,621,798mm©ø3906.622¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0155E-52.0155E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.539769E-36.539769E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1808.506mm180.851cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 64.583N/mm65.856Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 49,044,944N-mm500.119¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 24,644,115N-mm251.3¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 759,413mm©ø7594.135cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 197,821,136mm©ø197.821¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 260.492mm26.049cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 516.178mm51.618cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 309.667N/mm315.772Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 212.319N/mm216.505Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,557,509N158821.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 45267.989N4616.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7122.498mm712.25cm

piDeg=[24.60589060311825] piRad=[0.4294538064099468] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=17100 (cm), Sd=118 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 35600.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
017106.0001.76527548.887548.887548.88116.14 < OK 11866.9767.0768.00.101.580000
P1917000.7001.76527548.887548.887548.88116.14 < OK 11866.9767.0768.00.101.580000
P22716173.8001.76527548.887548.887548.88116.14 < OK 11866.9767.0768.00.101.580000
P34514600.9001.76527548.887548.887548.88116.14 < OK 11866.9767.0768.00.101.580000
P459.512894.01609.00.01021.77547548.8881.266.337630.147555.21115.92 < OK 11867.3567.4468.50.091.761.0470.0820.1750.014
P5908553.05950.00.03791.80317548.88297.7726.12245.8464.58309.67212.328027.907265.33116.42 < OK 11868.1268.4569.00.331.343.8370.3370.640.056Column Attached Equator Plate
120.54212.010291.00.06551.83077548.88216.54343.667765.417892.54116.00 < OK 11869.3569.4570.50.101.702.794.4290.4650.738
P61352505.111997.90.07641.84167548.88290.51362.607839.397911.48115.82 < OK 11869.7469.8571.00.111.853.7444.6730.6240.779
P7153932.213570.80.08641.85167548.88356.44382.307905.317931.18116.44 < OK 11870.1070.2171.00.111.324.5934.9270.7660.821
P8171105.314397.70.09161.85687548.88390.44393.317939.327942.19115.92 < OK 11870.2970.4071.50.111.765.0325.0690.8390.845
P9180014503.00.09231.85757548.88394.74394.747943.627943.62115.96 < OK 11870.3270.4271.50.101.725.0875.0870.8480.848


S-Tank Engineering
Spherical Tank Calculation [2 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=17100 (cm), Syt=198 MPa, MAWP=2.29476 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=597.409 (N-mm), N¥õ=119.482 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 17100mm1710.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 8550mm855.0cm
4¡¡L = Hydrostatic-test Water LevelL = 17100mm1710.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 29,493,631N3007513.3Kg
7¡¡S = Allowable Stress for the Design Condition SA516-60, Sd = 198MPaS = 198.0MPa2019.038Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.75339degree0.43203radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99504130.9950413
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.11774181.1177418
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41871350.4187135
20¡¡C5 = 22 / ¥õC5 = 0.88876720.8887672
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41871350.4187135
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7546.23N-mm76.95Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 597.409N-mm6.092Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 119.482N-mm1.218Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8399.98N/mm8565.596Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7226.56N/mm7369.04Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 41.77mm4.177cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 39.88mm3.988cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 183.637MPa1872.576Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,304,712,085N-mm13304.361¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 483,941,308N-mm4934.828¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 655,592,017N-mm6685.178¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 227,901,367N-mm2323.947¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 346.835N/mm353.673Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 757,320,917N-mm7722.524¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 397,606,217N-mm4054.455¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 117,910,099mm©ø117.91¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,970,450,899mm©ø3970.451¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.0765E-52.0765E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.657343E-36.657343E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1818.371mm181.837cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 90.49N/mm92.274Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 69,898,823N-mm712.77¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 35,122,776N-mm358.153¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 772,450mm©ø7724.505cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 203,542,761mm©ø203.543¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 263.503mm26.35cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 522.085mm52.209cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 439.15N/mm447.808Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 301.727N/mm307.676Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,225,709N226959.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65345.344N6663.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7160.0mm716.0cm

piDeg=[24.75338884463815] piRad=[0.43202813636537085] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=17100 (cm), Syt=198 MPa, MAWP=2.29476 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
017100.0001.76527546.237546.237546.23193.49 < OK 19838.1138.1539.00.042.280000
P1916994.7105.30.00101.76627546.236.622.207552.857548.43193.61 < OK 19838.1338.1739.00.042.220.0550.0180.0090.003
P22716168.1931.90.00911.77437546.2358.9819.167605.217565.39192.04 < OK 19838.3138.3439.50.033.010.4940.160.0820.027
P34514595.82504.20.02461.78987546.23160.4849.497706.717595.72193.72 < OK 19838.6538.6839.50.032.161.3430.4140.2240.069
P459.512889.54210.50.04131.80657546.23274.3978.657820.627624.88193.12 < OK 19839.0139.0440.00.032.472.2970.6580.3830.11
P5908550.08550.00.08381.8497546.23597.41119.48346.8390.49439.15301.738399.987226.56192.60 < OK 19839.8839.9641.00.082.73510.8330.167Column Attached Equator Plate
120.54210.512889.50.12641.89167546.23442.50638.247988.738184.47192.58 < OK 19840.8540.8842.00.032.743.7035.3420.6170.89
P61352504.214595.80.14311.90837546.23556.41667.408102.648213.63194.26 < OK 19841.2141.2442.00.031.894.6575.5860.7760.931
P7153931.916168.10.15861.92387546.23657.91697.738204.148243.96193.51 < OK 19841.5441.5842.50.042.275.5065.840.9180.973
P8171105.316994.70.16671.93197546.23710.27714.698256.508260.92192.06 < OK 19841.7141.7543.00.043.005.9455.9820.9910.997
P9180017100.00.16771.93297546.23716.89716.898263.128263.12192.17 < OK 19841.7341.7743.00.042.956611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 505445.1
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 17100
MRA(sWt[tid][20][10])= 918.633
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =11550mm
5. gCol[tid][5] =Upper Column HeightUCHT =3580mm
6. gCol[tid][6] =Lower Column HeightLCHT =7970mm
7. gCol[tid][7] =Column P.C.DPCD =16720mm
8. gCol[tid][8] =Brace AngleBRang =32.9544deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-60t68 ~ 71SHT46505.445616.643000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt71, t12¡¿3013¡¿3580SHT1014.02215.424000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 7970LPCS1016.19616.196000,000000,0003
4BRACE ( PIPE, ¥è= 32.9544 deg.)null¨ª0¡¿0t ¡¿ 9498LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-60(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-60PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86535.663648.263000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2281.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4001765.21765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9611 / 12
P19.0o9.0o17895.6001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9612 / 12
P218.0o27.0o17025.1001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9613 / 12
P318.0o45.0o15369.4001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9614 / 12
P414.5o59.5o13572.7930.55.71770.937.8637.9339.00.7+0.371.81981.98901.0¥òeq = 222.6825 / 12
P530.5o90.0o9003.25500.033.71798.938.3038.4840.00.7+0.321.81722.01451.0¥òeq = 222.386 / 12
30.5o120.5o4433.710069.561.71826.938.9639.0340.00.7+0.271.81472.03991.0¥òeq = 223.5038 / 12
P614.5o135.0o2637.011866.272.71837.939.1739.2440.00.7+0.061.80372.03991.0¥òeq = 224.8349 / 12
P718.0o153.0o981.313521.982.91848.139.3739.4440.50.7+0.361.81892.06541.0¥òeq = 223.03910 / 12
P818.0o171.0o110.814392.488.21853.439.4839.5540.50.7+0.251.81362.06541.0¥òeq = 223.68211 / 12
P99.0o180.0o014503.288.91854.139.4939.5640.50.7+0.241.81292.06541.80371.9891.0¥òeq = 223.76412 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.8037MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.9890MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002254.62254.625.2225.7728.4239.01.82551.9890¥òeq = 378.2571 / 12
P19.0o9.0o17889.2110.81.12255.725.2325.7828.4439.01.82551.9890¥òeq = 378.492 / 12
P218.0o27.0o17019.1980.99.62264.225.3325.8828.5339.01.82551.9890¥òeq = 371.4783 / 12
P318.0o45.0o15364.02636.025.92280.525.5226.0728.7239.01.82551.9890¥òeq = 374.9044 / 12
P414.5o59.5o13567.84432.243.52298.125.7226.2728.9239.01.81981.9890¥òeq = 378.6585 / 12
P530.5o90.0o9000.09000.088.32342.926.2326.7829.4340.01.81722.0145¥òeq = 379.076 / 12
30.5o120.5o4432.213567.8133.12387.726.7427.2929.9540.01.81472.0399¥òeq = 379.7438 / 12
P614.5o135.0o2636.015364.0150.72405.326.9527.5030.1540.01.80372.0399¥òeq = 374.8739 / 12
P718.0o153.0o980.917019.1166.92421.527.1327.6830.3340.51.81892.0654¥òeq = 378.02310 / 12
P818.0o171.0o110.817889.2175.42430.027.2327.7830.4340.51.81362.0654¥òeq = 379.68911 / 12
P99.0o180.0o018000.0176.52431.127.2427.7930.4440.51.81292.0654¥òeq = 379.90212 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8037at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.254622.9905
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00035.8039.01.82551.9890234.82651 / 12
P19.0o9.0o17895.60017889.2110.81.135.8039.01.82551.9890234.82652 / 12
P218.0o27.0o17025.10017019.1980.99.635.8039.01.82551.9890234.82653 / 12
P318.0o45.0o15369.40015364.02636.025.935.8039.01.82551.9890234.82654 / 12
P414.5o59.5o13572.7930.55.713567.84432.243.535.8039.01.81981.9890234.82655 / 12
P530.5o90.0o9003.25500.033.79000.09000.088.336.3039.51.81722.0145241.40506 / 12
30.5o120.5o4433.710069.561.74432.213567.8133.136.8040.01.81472.0399248.07368 / 12
P614.5o135.0o2637.011866.272.72636.015364.0150.736.8040.01.80372.0399248.07369 / 12
P718.0o153.0o981.313521.982.9980.917019.1166.937.3040.51.81892.0654254.832410 / 12
P818.0o171.0o110.814392.488.2110.817889.2175.437.3040.51.81362.0654254.832411 / 12
P99.0o180.0o014503.288.9018000.0176.537.3040.51.81292.0654254.832412 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8037at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.254622.9905
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =234.82652.3946CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=234.8265 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.7728.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.7828.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.8828.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.0728.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.2728.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3038.526.7829.4326.6940.00.7+0.32#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9639.027.2929.9526.6940.00.7+0.278 / 12
P614.5o135.0o39.1739.227.5030.1526.6940.00.7+0.06#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3739.427.6830.3326.6940.50.7+0.36#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4839.627.7830.4326.6940.50.7+0.25#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4939.627.7930.4426.6940.50.7+0.2412 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [2 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 1. SK-02Rev. No.[AAA4] 
Design Code : Div. 1, Di = 17100 mm, CA = 3 mm, SG = 0.649, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2323 kPa
Material : SA516-60, EXTERNAL CHART NO. [CS-2], DTEMP = 70 ¡É, Sd = 118 MPa, St = 198 MPa, Samb = 118 MPa, LSR = Samb/Sd = 1.0, Ft = 415 MPa, Fy = 220 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o66.9767.150.2052.6527.4968.00.7+0.23#127.068.02686.18058.2310,97632,9291 / 12
P19.0o9.0o66.9767.150.2252.6727.4968.00.7+0.232 / 12
P218.0o27.0o66.9767.150.4052.8427.4968.00.7+0.233 / 12
P318.0o45.0o66.9767.150.7353.1827.4968.00.7+0.23#218.068.02686.18750.049,72138,8844 / 12
P414.5o59.5o67.3567.451.0953.5427.4968.50.7+0.36#314.568.52314.48953.568,21549,2915 / 12
P530.5o90.0o68.1268.452.0154.4627.49TD90USED0.7+0.35#461.070.52686.19202.82012,901258,0296 / 12
30.5o120.5o69.3569.452.9355.3827.4970.50.7+0.358 / 12
P614.5o135.0o69.7469.853.2955.7427.4971.00.7+0.45#514.571.02314.48953.568,51551,0899 / 12
P718.0o153.0o70.1070.253.6356.0827.4971.00.7+0.09#618.071.02686.18550.0410,15040,59910 / 12
P818.0o171.0o70.2970.453.8156.2527.4971.50.7+0.40#727.071.52686.18058.2311,54134,62411 / 12
P99.0o180.0o70.3270.453.8356.2727.4971.50.7+0.3812 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=284.624 (N-mm), N¥õ=18.877 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,041,966N2043711.8Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6250.625
10¡¡¥ã = Liquid Density¥ã = 6.129156E-6N/mm©ø625.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.20483degree0.42245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99607510.9960751
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09448151.0944815
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41000000.4100000
20¡¡C5 = 22 / ¥õC5 = 0.90890930.9089093
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41000000.4100000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7946.224N-mm81.029Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 284.624N-mm2.902Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 18.877N-mm0.192Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8404.85N/mm8570.562Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7675.28N/mm7826.607Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.56mm3.956cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.3mm3.83cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 216.418MPa2206.849Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 933,592,940N-mm9519.999¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 355,069,974N-mm3620.706¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 469,111,987N-mm4783.611¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 166,765,270N-mm1700.532¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 233.408N/mm238.01Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 541,311,148N-mm5519.838¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 284,749,259N-mm2903.634¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 93,925,995mm©ø93.926¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,345,188,157mm©ø4345.188¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8569E-51.8569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.227031E-36.227031E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1873.604mm187.36cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 59.411N/mm60.582Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 47,613,755N-mm485.525¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 23,924,970N-mm243.967¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 801,429mm©ø8014.295cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 212,712,858mm©ø212.713¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 265.417mm26.542cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 526.095mm52.61cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 289.819N/mm295.533Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 201.185N/mm205.152Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,525,625N155570.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 40348.543N4114.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7382.624mm738.262cm

piDeg=[24.204834801458325] piRad=[0.42245406218675574] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P1917895.6001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P22717025.1001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P34515369.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P459.513572.7930.50.00571.77097946.2249.411.947995.647948.16222.68 < OK 23037.8637.9339.00.073.180.5970.0230.0990.004
P5909003.25500.00.03371.79897946.22284.6218.88233.4159.41289.82201.188404.857675.28222.38 < OK 23038.3038.4839.50.183.313.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.06171.82697946.22210.00345.658156.238291.88223.50 < OK 23038.9639.0340.00.072.822.5364.1740.4230.696
P61352637.011866.20.07271.83797946.22288.94365.868235.178312.08224.83 < OK 23039.1739.2440.00.072.253.494.4180.5820.736
P7153981.313521.90.08291.84817946.22359.29386.888305.518333.10223.04 < OK 23039.3739.4440.50.073.034.3394.6720.7230.779
P8171110.814392.40.08821.85347946.22395.57398.638341.798344.86223.68 < OK 23039.4839.5540.50.072.754.7774.8140.7960.802
P9180014503.20.08891.85417946.22400.16400.168346.388346.38223.76 < OK 23039.4939.5640.50.072.714.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [3 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (MPa), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=661.949 (N-mm), N¥õ=132.39 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,139,894N3277357.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7943.4N-mm81.0Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8883.26N/mm9058.404Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7612.2N/mm7762.284Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.19mm2.219cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.15mm2.115cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.589MPa3697.379Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,496,605,307N-mm15261.127¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 567,379,312N-mm5785.659¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 752,014,566N-mm7668.414¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 266,573,697N-mm2718.295¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 372.415N/mm379.758Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 867,867,174N-mm8849.782¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 456,414,316N-mm4654.131¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 65,250,509mm©ø65.251¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 94.501N/mm96.364Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 76,331,568N-mm778.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,355,103N-mm391.113¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 463.59N/mm472.73Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 322.105N/mm328.456Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,448,674N249695.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65095.462N6637.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (MPa), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0001.76527943.47943.407943.40378.26 < OK 394.2520.1520.1721.00.024.060000
P1917889.2110.80.00111.76637943.47.342.447950.747945.84378.49 < OK 394.2520.1620.1821.00.024.000.0550.0180.0090.003
P22717019.1980.90.00961.77487943.465.3521.238008.757964.63371.48 < OK 394.2520.2620.2821.50.025.780.4940.160.0820.027
P34515364.02636.00.02591.79117943.4177.8254.848121.227998.24374.90 < OK 394.2520.4420.4721.50.034.911.3430.4140.2240.069
P459.513567.84432.20.04351.80877943.4304.0387.158247.438030.55378.66 < OK 394.2520.6520.6721.50.023.952.2970.6580.3830.11
P5909000.09000.00.08831.85357943.4661.95132.39372.4294.50463.59322.108883.267612.20379.07 < OK 394.2521.1521.1822.00.033.85510.8330.167Column Attached Equator Plate
120.54432.213567.80.13311.89837943.4490.30707.198433.708650.59379.74 < OK 394.2521.6721.6922.50.023.683.7035.3420.6170.89
P61352636.015364.00.15071.91597943.4616.52739.508559.928682.90374.87 < OK 394.2521.8721.8923.00.024.914.6575.5860.7760.931
P7153980.917019.10.16691.93217943.4728.99773.118672.398716.51378.02 < OK 394.2522.0522.0823.00.034.125.5065.840.9180.973
P8171110.817889.20.17541.94067943.4787.00791.908730.408735.30379.69 < OK 394.2522.1522.1823.00.033.695.9455.9820.9910.997
P9180018000.00.17651.94177943.4794.34794.348737.748737.74379.90 < OK 394.2522.1622.1923.00.033.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 318231.293
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t39 ~ 40.5SHT46318.231388.242000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt40.5, t12¡¿3013¡¿3700SHT1012.56713.823000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86347.665418.932000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2281.9 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o18006.4001765.21765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9611 / 12
P19.0o9.0o17895.6001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9612 / 12
P218.0o27.0o17025.1001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9613 / 12
P318.0o45.0o15369.4001765.237.7537.8239.00.7+0.481.82551.98901.0¥òeq = 221.9614 / 12
P414.5o59.5o13572.7930.55.41770.637.8637.9239.00.7+0.381.82011.98901.0¥òeq = 222.6485 / 12
P530.5o90.0o9003.25500.032.11797.338.2738.4540.00.7+0.351.81882.01451.0¥òeq = 222.1776 / 12
30.5o120.5o4433.710069.558.91824.138.9038.9740.00.7+0.331.81752.03991.0¥òeq = 223.158 / 12
P614.5o135.0o2637.011866.269.41834.639.1139.1840.00.7+0.121.80702.03991.0¥òeq = 224.4219 / 12
P718.0o153.0o981.313521.979.01844.239.3039.3740.50.7+0.431.82282.06541.0¥òeq = 222.57410 / 12
P818.0o171.0o110.814392.484.11849.339.4039.4740.50.7+0.331.81772.06541.0¥òeq = 223.18811 / 12
P99.0o180.0o014503.284.81850.039.4139.4840.50.7+0.321.81702.06541.8071.9891.0¥òeq = 223.26612 / 12
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7652MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.8070MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.9890MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o18000.0002258.82258.825.2225.8228.4239.01.82551.9890¥òeq = 378.2571 / 12
P19.0o9.0o17889.2110.81.12259.925.2325.8328.4439.01.82551.9890¥òeq = 378.492 / 12
P218.0o27.0o17019.1980.99.62268.425.3325.9328.5339.01.82551.9890¥òeq = 371.4783 / 12
P318.0o45.0o15364.02636.025.92284.725.5226.1228.7239.01.82551.9890¥òeq = 374.9044 / 12
P414.5o59.5o13567.84432.243.52302.325.7226.3228.9239.01.82011.9890¥òeq = 378.6585 / 12
P530.5o90.0o9000.09000.088.32347.126.2326.8329.4340.01.81882.0145¥òeq = 379.076 / 12
30.5o120.5o4432.213567.8133.12391.926.7427.3429.9540.01.81752.0399¥òeq = 379.7438 / 12
P614.5o135.0o2636.015364.0150.72409.526.9527.5430.1540.01.80702.0399¥òeq = 374.8739 / 12
P718.0o153.0o980.917019.1166.92425.727.1327.7330.3340.51.82282.0654¥òeq = 378.02310 / 12
P818.0o171.0o110.817889.2175.42434.227.2327.8330.4340.51.81772.0654¥òeq = 379.68911 / 12
P99.0o180.0o018000.0176.52435.327.2427.8430.4440.51.81702.0654¥òeq = 379.90212 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8070at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.258823.0333
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o18006.40018000.00035.8039.01.82551.9890234.82651 / 12
P19.0o9.0o17895.60017889.2110.81.135.8039.01.82551.9890234.82652 / 12
P218.0o27.0o17025.10017019.1980.99.635.8039.01.82551.9890234.82653 / 12
P318.0o45.0o15369.40015364.02636.025.935.8039.01.82551.9890234.82654 / 12
P414.5o59.5o13572.7930.55.413567.84432.243.535.8039.01.82011.9890234.82655 / 12
P530.5o90.0o9003.25500.032.19000.09000.088.336.3039.51.81882.0145241.40506 / 12
30.5o120.5o4433.710069.558.94432.213567.8133.136.8040.01.81752.0399248.07368 / 12
P614.5o135.0o2637.011866.269.42636.015364.0150.736.8040.01.80702.0399248.07369 / 12
P718.0o153.0o981.313521.979.0980.917019.1166.937.3040.51.82282.0654254.832410 / 12
P818.0o171.0o110.814392.484.1110.817889.2175.437.3040.51.81772.0654254.832411 / 12
P99.0o180.0o014503.284.8018000.0176.537.3040.51.81702.0654254.832412 / 12
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7652at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.206522.5000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.8070at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.258823.0333
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.9890at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.486325.3532
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA537-CL2
Maximum. Allowable External PressureMAEP =234.82652.3946CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=234.8265 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm2(=1765.197 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8228.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8328.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9328.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1228.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.3228.9226.6939.00.7+0.38#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.2738.426.8329.4326.6940.00.7+0.35#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9039.027.3429.9526.6940.00.7+0.338 / 12
P614.5o135.0o39.1139.227.5430.1526.6940.00.7+0.12#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3039.427.7330.3326.6940.50.7+0.43#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4039.527.8330.4326.6940.50.7+0.33#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4139.527.8430.4426.6940.50.7+0.3212 / 12
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [3 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 2. T-3208(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.625, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2254.6 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.7728.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.7828.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.8828.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.0728.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.2728.9226.6939.00.7+0.37#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.3038.526.7829.4326.69TD90USED0.7+0.32#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9639.027.2929.9526.6940.00.7+0.278 / 12
P614.5o135.0o39.1739.227.5030.1526.6940.00.7+0.06#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3739.427.6830.3326.6940.50.7+0.36#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4839.627.7830.4326.6940.50.7+0.25#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4939.627.7930.4426.6940.50.7+0.2412 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 26.69 mm; Pe :101.32 kPa ¡Â Pa = 101.37 kPa = 2*Fha*(tc/Ro)*1000; Fhe=38.956; Fic=38.956 MPa; Fha=19.478 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=18000 (cm), Sd=230 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=271.417 (N-mm), N¥õ=18.001 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9003.2mm900.32cm
4¡¡L = Design Liquid levelL = 14500mm1450.0cm
5¡¡CA = Corrosion Allowance CA = 3.2mm0.32cm
6¡¡Wt = Total Weight at Operating ConditionWt = 19,259,269N1963898.9Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 230MPaS = 230.0MPa2345.347Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5960.596
10¡¡¥ã = Liquid Density¥ã = 5.844763E-6N/mm©ø596.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.20483degree0.42245radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 52.34583degree0.91361radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99607510.9960751
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09448151.0944815
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41000000.4100000
20¡¡C5 = 22 / ¥õC5 = 0.90890930.9089093
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41000000.4100000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7946.224N-mm81.029Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 271.417N-mm2.768Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 18.001N-mm0.184Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8384.84N/mm8550.157Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7685.73N/mm7837.263Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.48mm3.948cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 38.27mm3.827cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 216.22MPa2204.83Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 897,133,424N-mm9148.215¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 341,203,460N-mm3479.307¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 450,791,801N-mm4596.797¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 160,252,601N-mm1634.122¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 224.293N/mm228.715Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 520,171,375N-mm5304.272¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 273,628,974N-mm2790.239¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 93,925,995mm©ø93.926¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,345,188,157mm©ø4345.188¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8569E-51.8569E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.227031E-36.227031E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1873.604mm187.36cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 57.091N/mm58.217Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 45,754,300N-mm466.564¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 22,990,631N-mm234.439¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 801,429mm©ø8014.295cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 212,712,858mm©ø212.713¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 265.417mm26.542cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 526.095mm52.61cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 278.501N/mm283.992Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 193.329N/mm197.141Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,466,045N149495.0Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 38772.815N3953.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7382.624mm738.262cm

piDeg=[24.204834801458325] piRad=[0.42245406218675574] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Sd=230 MPa, Pg=1.7652 (MPa), HT_UPPCOL = 36900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018006.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P1917895.6001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P22717025.1001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P34515369.4001.76527946.227946.227946.22221.96 < OK 23037.7537.8239.00.073.500000
P459.513572.7930.50.00541.77067946.2247.121.857993.347948.07222.65 < OK 23037.8637.9239.00.063.200.5970.0230.0990.004
P5909003.25500.00.03211.79737946.22271.4218.00224.2957.09278.50193.338384.847685.73222.18 < OK 23038.2738.4539.50.183.403.4370.2280.5730.038Column Attached Equator Plate
120.54433.710069.50.05891.82417946.22200.26329.618146.488275.84223.15 < OK 23038.9038.9740.00.072.982.5364.1740.4230.696
P61352637.011866.20.06941.83467946.22275.54348.888221.768295.11224.42 < OK 23039.1139.1840.00.072.433.494.4180.5820.736
P7153981.313521.90.07901.84427946.22342.61368.938288.848315.15222.57 < OK 23039.3039.3740.50.073.234.3394.6720.7230.779
P8171110.814392.40.08411.84937946.22377.21380.148323.448326.36223.19 < OK 23039.4039.4740.50.072.964.7774.8140.7960.802
P9180014503.20.08481.857946.22381.59381.598327.818327.81223.27 < OK 23039.4139.4840.50.072.934.8334.8330.8050.805


S-Tank Engineering
Spherical Tank Calculation [4 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (MPa), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=661.949 (N-mm), N¥õ=132.39 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 18000mm1800.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 9000mm900.0cm
4¡¡L = Hydrostatic-test Water LevelL = 18000mm1800.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 32,139,894N3277357.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 394.25MPaS = 394.25MPa4020.231Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.765MPa18.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 10.0columns10columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 24.27465degree0.42367radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99594480.9959448
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.09744761.0974476
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.41111110.4111111
20¡¡C5 = 22 / ¥õC5 = 0.90629520.9062952
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.41111110.4111111
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 7943.4N-mm81.0Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 661.949N-mm6.75Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 132.39N-mm1.35Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 8883.26N/mm9058.404Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 7612.2N/mm7762.284Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.19mm2.219cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 21.15mm2.115cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 362.589MPa3697.379Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,496,605,307N-mm15261.127¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 567,379,312N-mm5785.659¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 752,014,566N-mm7668.414¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 266,573,697N-mm2718.295¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 372.415N/mm379.758Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 867,867,174N-mm8849.782¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 456,414,316N-mm4654.131¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 65,250,509mm©ø65.251¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 4,376,861,061mm©ø4376.861¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.8838E-51.8838E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.280747E-36.280747E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1878.179mm187.818cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 94.501N/mm96.364Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 76,331,568N-mm778.365¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 38,355,103N-mm391.113¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 807,732mm©ø8077.324cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 215,536,570mm©ø215.537¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 266.842mm26.684cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 528.891mm52.889cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 463.59N/mm472.73Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 322.105N/mm328.456Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,448,674N249695.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 65095.462N6637.9Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7400.0mm740.0cm

piDeg=[24.27465219458477] piRad=[0.4236726055719715] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=18000 (cm), Syt=394.25 MPa, MAWP=2.2065 (MPa), HT_UPPCOL = 37000.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
018000.0001.76527943.47943.407943.40378.26 < OK 394.2520.1520.1721.00.024.060000
P1917889.2110.80.00111.76637943.47.342.447950.747945.84378.49 < OK 394.2520.1620.1821.00.024.000.0550.0180.0090.003
P22717019.1980.90.00961.77487943.465.3521.238008.757964.63371.48 < OK 394.2520.2620.2821.50.025.780.4940.160.0820.027
P34515364.02636.00.02591.79117943.4177.8254.848121.227998.24374.90 < OK 394.2520.4420.4721.50.034.911.3430.4140.2240.069
P459.513567.84432.20.04351.80877943.4304.0387.158247.438030.55378.66 < OK 394.2520.6520.6721.50.023.952.2970.6580.3830.11
P5909000.09000.00.08831.85357943.4661.95132.39372.4294.50463.59322.108883.267612.20379.07 < OK 394.2521.1521.1822.00.033.85510.8330.167Column Attached Equator Plate
120.54432.213567.80.13311.89837943.4490.30707.198433.708650.59379.74 < OK 394.2521.6721.6922.50.023.683.7035.3420.6170.89
P61352636.015364.00.15071.91597943.4616.52739.508559.928682.90374.87 < OK 394.2521.8721.8923.00.024.914.6575.5860.7760.931
P7153980.917019.10.16691.93217943.4728.99773.118672.398716.51378.02 < OK 394.2522.0522.0823.00.034.125.5065.840.9180.973
P8171110.817889.20.17541.94067943.4787.00791.908730.408735.30379.69 < OK 394.2522.1522.1823.00.033.695.9455.9820.9910.997
P9180018000.00.17651.94177943.4794.34794.348737.748737.74379.90 < OK 394.2522.1622.1923.00.033.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 46
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 318231.293
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 18000
MRA(sWt[tid][20][10])= 1017.878
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =10Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =12000mm
5. gCol[tid][5] =Upper Column HeightUCHT =3700mm
6. gCol[tid][6] =Lower Column HeightLCHT =8300mm
7. gCol[tid][7] =Column P.C.DPCD =17600mm
8. gCol[tid][8] =Brace AngleBRang =33.2354deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.1015deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t39 ~ 40.5SHT46318.231388.242000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt40.5, t12¡¿3013¡¿3700SHT1012.56713.823000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 8300LPCS1016.86716.867000,000000,0003
4BRACE ( PIPE, ¥è= 33.2354 deg.)null¨ª0¡¿0t ¡¿ 9923LPCS20000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL86347.665418.932000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 17.9 kg/cm2(=1755.39 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2406.6 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o25006.0001755.41755.476.9177.1278.00.7+0.181.77611.84731.084¥òeq = 146.3181 / 13
P16.4o6.4o24928.1001755.476.9177.1278.00.7+0.181.77611.84731.084¥òeq = 146.3182 / 13
P212.8o19.2o24310.5001755.476.9177.1278.00.7+0.181.77611.84731.084¥òeq = 146.3183 / 13
P312.8o32.0o23106.1896.95.31760.777.1377.3578.50.7+0.451.78261.85921.084¥òeq = 145.7884 / 13
P49.5o41.5o21867.22135.812.61768.077.4477.6678.50.7+0.141.77531.85921.084¥òeq = 146.3955 / 13
P545.5o87.0o13157.410845.663.81819.279.6679.8381.00.7+0.471.78311.91821.084¥òeq = 145.9386 / 13
P63.0o90.0o12503.011500.067.71823.179.4179.9983.50.7+0.311.77921.91821.084¥òeq = 146.3977 / 13
48.5o138.5o3138.820864.2122.81878.282.0882.3383.50.7+0.471.78311.97721.084¥òeq = 145.8619 / 13
P79.5o148.0o1899.922103.1130.11885.582.3882.6483.50.7+0.161.77581.97721.084¥òeq = 146.42310 / 13
P812.8o160.8o695.523307.5137.11892.582.6882.9384.00.7+0.371.78061.98901.084¥òeq = 146.06511 / 13
P912.8o173.6o77.923925.1140.81896.282.8383.0984.00.7+0.211.77691.98901.084¥òeq = 146.34512 / 13
P106.4o180.0o024003.0141.21896.682.8583.1184.00.7+0.191.77651.98901.77531.84731.084¥òeq = 146.3813 / 13
Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =1.7554MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =1.7753MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =1.8473MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 17.9 kg/cm2(=1755.39 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2405.5 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o25000.0002405.52405.565.3766.1168.8078.01.77611.8473¥òeq = 223.9031 / 13
P16.4o6.4o24922.177.90.82406.365.4066.1468.8378.01.77611.8473¥òeq = 2242 / 13
P212.8o19.2o24304.7695.36.82412.365.5666.3068.9978.01.77611.8473¥òeq = 222.5043 / 13
P312.8o32.0o23100.61899.418.62424.165.8966.6369.3278.51.78261.8592¥òeq = 224.0034 / 13
P49.5o41.5o21861.93138.130.82436.366.2266.9669.6578.51.77531.8592¥òeq = 223.2995 / 13
P545.5o87.0o13154.211845.8116.22521.768.5869.3272.0181.01.78311.9182¥òeq = 223.3496 / 13
P63.0o90.0o12500.012500.0122.62528.168.7569.4972.1883.51.77921.9182¥òeq = 223.3617 / 13
48.5o138.5o3138.121861.9214.42619.971.2872.0274.7283.51.78311.9772¥òeq = 223.8629 / 13
P79.5o148.0o1899.423100.6226.52632.071.6272.3675.0583.51.77581.9772¥òeq = 223.19910 / 13
P812.8o160.8o695.324304.7238.32643.871.9472.6875.3784.01.78061.9890¥òeq = 222.51711 / 13
P912.8o173.6o77.924922.1244.42649.972.1172.8575.5484.01.77691.9890¥òeq = 223.19212 / 13
P106.4o180.0o025000.0245.22650.772.1372.8775.5684.01.77651.9890¥òeq = 223.27813 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7554at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.378624.2545
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.7753at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.405524.5293
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.8473at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.503125.5245


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 17.9 kg/cm2(=1755.39 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2405.5 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o25006.00025000.00075.0078.01.77611.8473529.83811 / 13
P16.4o6.4o24928.10024922.177.90.875.0078.01.77611.8473529.83812 / 13
P212.8o19.2o24310.50024304.7695.36.875.0078.01.77611.8473529.83813 / 13
P312.8o32.0o23106.1896.95.323100.61899.418.675.5078.51.78261.8592536.88354 / 13
P49.5o41.5o21867.22135.812.621861.93138.130.875.5078.51.77531.8592536.88355 / 13
P545.5o87.0o13157.410845.663.813154.211845.8116.278.0081.01.78311.9182572.79966 / 13
P63.0o90.0o12503.011500.067.712500.012500.0122.678.0081.01.77921.9182572.79967 / 13
48.5o138.5o3138.820864.2122.83138.121861.9214.480.5083.51.78311.9772609.86369 / 13
P79.5o148.0o1899.922103.1130.11899.423100.6226.580.5083.51.77581.9772609.863610 / 13
P812.8o160.8o695.523307.5137.1695.324304.7238.381.0084.01.78061.9890617.414011 / 13
P912.8o173.6o77.923925.1140.877.924922.1244.481.0084.01.77691.9890617.414012 / 13
P106.4o180.0o024003.0141.2025000.0245.281.0084.01.77651.9890617.414013 / 13
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =1.7554at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.378624.2545
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =1.7753at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MWAP¡¿LSRPset(MAWP) =2.405524.5293
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =1.8473at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.25¡¿MAP¡¿LSRPset(MAP) =2.503125.5245
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =102.9698SA516-65
Maximum. Allowable External PressureMAEP =529.83815.4028CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=529.8381 kPa)


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 17.9 kg/cm2(=1755.39 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2405.5 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o76.9177.166.1168.8035.9678.00.7+0.18#119.278.02792.58377.6313,60840,8251 / 13
P16.4o6.4o76.9177.166.1468.8335.9678.00.7+0.182 / 13
P212.8o19.2o76.9177.166.3068.9935.9678.00.7+0.183 / 13
P312.8o32.0o77.1377.466.6369.3235.9678.50.7+0.45#212.878.52792.59567.7412,71050,8414 / 13
P49.5o41.5o77.4477.766.9669.6535.9678.50.7+0.14#39.578.51858.68726.696,66159,9485 / 13
P545.5o87.0o79.6679.869.3272.0135.9681.00.7+0.47#445.581.02801.19970.02815,531434,8616 / 13
P63.0o90.0o79.4180.069.4972.1835.9683.50.7+0.31#551.583.52805.011335.62818,416515,6417 / 13
48.5o138.5o82.0882.372.0274.7235.9683.50.7+0.479 / 13
P79.5o148.0o82.3882.672.3675.0535.9683.50.7+0.16#69.583.51858.68726.697,08563,76710 / 13
P812.8o160.8o82.6882.972.6875.3735.9684.00.7+0.37#712.884.02792.59367.7413,60154,40311 / 13
P912.8o173.6o82.8383.172.8575.5435.9684.00.7+0.21#819.284.02792.58377.6314,65543,96512 / 13
P106.4o180.0o82.8583.172.8775.5635.9684.00.7+0.1913 / 13
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [4 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 3. T-3213(3)Rev. No.[AAA4] 
Design Code : Div. 2, Di = 18000 mm, CA = 3.2 mm, SG = 0.596, Pg= 18.0 kg/cm©÷(=1765.197 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2258.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 70 ¡É, Sd = 230 MPa, St = 394.25 MPa, Samb = 230 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o37.7537.825.8228.4226.6939.00.7+0.48#127.039.02827.48482.336,97520,9261 / 12
P19.0o9.0o37.7537.825.8328.4426.6939.00.7+0.482 / 12
P218.0o27.0o37.7537.825.9328.5326.6939.00.7+0.483 / 12
P318.0o45.0o37.7537.826.1228.7226.6939.00.7+0.48#218.039.02827.49200.046,17824,7104 / 12
P414.5o59.5o37.8637.926.3228.9226.6939.00.7+0.38#314.539.02436.29424.865,18331,0955 / 12
P530.5o90.0o38.2738.426.8329.4326.69TD90USED0.7+0.35#461.040.02827.49681.9208,111162,2166 / 12
30.5o120.5o38.9039.027.3429.9526.6940.00.7+0.338 / 12
P614.5o135.0o39.1139.227.5430.1526.6940.00.7+0.12#514.540.02436.29424.865,31531,8929 / 12
P718.0o153.0o39.3039.427.7330.3326.6940.50.7+0.43#618.040.52827.49000.046,41525,66110 / 12
P818.0o171.0o39.4039.527.8330.4326.6940.50.7+0.33#727.040.52827.48482.337,24421,73111 / 12
P99.0o180.0o39.4139.527.8430.4426.6940.50.7+0.3212 / 12
Spherical tank, / External Pressure calc Result !!
DivNo = 2, teReq = 35.96 mm; Pe :102.97 kPa ¡Â Pa = 103.02 kPa = 2*Fha*(tc/Ro)*1000; Fhe=39.181; Fic=39.181 MPa; Fha=19.59 MPa; FS=2


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=25000 (cm), Sd=148.486 MPa, Pg=1.7554 (MPa), HT_UPPCOL = 47100.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=726.738 (N-mm), N¥õ=119.289 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25000mm2500.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12503mm1250.3cm
4¡¡L = Design Liquid levelL = 24000mm2400.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 60,610,333N6180533.9Kg
7¡¡S = Allowable Stress for the Design Condition SA516-65, Sd = 148.486MPaS = 148.486MPa1514.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.755MPa17.9Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.60.6
10¡¡¥ã = Liquid Density¥ã = 5.88399E-6N/mm©ø600.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.13561degree0.38634radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 23.10617degree0.40328radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99976930.9997693
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.00585521.0058552
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.37680000.3768000
20¡¡C5 = 22 / ¥õC5 = 0.99387380.9938738
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.37680000.3768000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 10973.883N-mm111.902Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 726.738N-mm7.411Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 119.289N-mm1.216Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 11941.03N/mm12176.462Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 10600.23N/mm10809.226Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 83.11mm8.311cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 79.41mm7.941cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 140.071MPa1428.327Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,993,942,002N-mm20332.55¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 794,009,651N-mm8096.645¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 999,487,769N-mm10191.939¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 382,039,563N-mm3895.719¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 317.386N/mm323.644Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,194,823,183N-mm12183.806¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 614,980,666N-mm6271.058¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 316,224,245mm©ø316.224¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 8,979,669,787mm©ø8979.67¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.189E-51.189E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.769617E-34.769617E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2385.308mm238.531cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 76.973N/mm78.491Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 91,240,121N-mm930.39¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 45,735,224N-mm466.369¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,185,355mm©ø11853.551cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 365,937,910mm©ø365.938¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 308.716mm30.872cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 612.822mm61.282cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 492.945N/mm502.664Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 342.309N/mm349.058Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 3,316,322N338170.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 90996.756N9279.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9422.261mm942.226cm

piDeg=[22.13560759591294] piRad=[0.3863392344781473] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=25000 (cm), Sd=148.486 MPa, Pg=1.7554 (MPa), HT_UPPCOL = 47100.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025006.0001.755410973.8810973.8810973.88146.32 < OK 148.48676.9177.1278.00.211.460000
P16.424928.1001.755410973.8810973.8810973.88146.32 < OK 148.48676.9177.1278.00.211.460000
P219.224310.5001.755410973.8810973.8810973.88146.32 < OK 148.48676.9177.1278.00.211.460000
P33223106.1896.90.00531.760710973.8858.637.3511032.5110981.23145.79 < OK 148.48677.1377.3578.50.221.820.3820.0480.0640.008
P441.521867.22135.80.01261.76810973.88132.4924.6311106.3810998.52146.40 < OK 148.48677.4477.6678.50.221.410.8640.1610.1440.027
P58713157.410845.60.06381.819210973.88679.39118.5011653.2711092.38145.94 < OK 148.48679.6679.8381.00.171.724.4320.7730.7390.129
P69012503.011500.00.06771.823110973.88726.74119.29317.3976.97492.94342.3111941.0310600.23146.40 < OK 148.48679.4179.9980.50.581.414.7410.7780.790.13Column Attached Equator Plate
138.53138.820864.20.12281.878210973.88706.97827.9511680.8611801.84145.86 < OK 148.48682.0882.3283.50.241.774.6125.4010.7690.9
P71481899.922103.10.13011.885510973.88777.14848.9411751.0211822.82146.42 < OK 148.48682.3882.6383.50.251.395.0695.5380.8450.923
P8160.8695.523307.50.13711.892510973.88844.43870.2511818.3111844.13146.06 < OK 148.48682.6882.9384.00.251.635.5085.6770.9180.946
P9173.677.923925.10.14081.896210973.88878.62881.4911852.5011855.37146.34 < OK 148.48682.8383.0984.00.261.445.7315.750.9550.958
P10180024003.00.14121.896610973.88882.92882.9211856.8011856.80146.38 < OK 148.48682.8583.1184.00.261.425.7595.7590.960.96


S-Tank Engineering
Spherical Tank Calculation [5 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=25000 (cm), Syt=228 MPa, MAWP=2.19425 (MPa), HT_UPPCOL = 47300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=1276.908 (N-mm), N¥õ=255.382 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 25000mm2500.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 12500mm1250.0cm
4¡¡L = Hydrostatic-test Water LevelL = 25000mm2500.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 90,508,955N9229344.9Kg
7¡¡S = Allowable Stress for the Design Condition SA516-65, Sd = 228MPaS = 228.0MPa2324.953Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 1.755MPa17.9Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 1066.8mm106.68cm
12¡¡N = Number of Support ColumnN = 14.0columns14columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 22.23461degree0.38807radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99959990.9995999
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.01012641.0101264
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.37840000.3784000
20¡¡C5 = 22 / ¥õC5 = 0.98944840.9894484
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.37840000.3784000
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 10971.25N-mm111.876Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 1276.908N-mm13.021Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 255.382N-mm2.604Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 12605.02N/mm12853.543Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 10493.62N/mm10700.514Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 54.96mm5.496cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 51.43mm5.143cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 209.401MPa2135.296Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 2,976,824,175N-mm30355.159¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 1,178,727,152N-mm12019.672¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 1,492,169,456N-mm15215.894¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 567,341,146N-mm5785.27¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 470.299N/mm479.572Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 1,784,969,876N-mm18201.627¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 918,486,241N-mm9365.953¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 258,086,691mm©ø258.087¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 9,090,473,172mm©ø9090.473¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 1.2158E-51.2158E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 4.833577E-34.833577E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 2395.134mm239.513cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 113.438N/mm115.675Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 136,194,425N-mm1388.797¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 68,269,118N-mm696.151¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 1,200,605mm©ø12006.051cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 373,853,946mm©ø373.854¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 311.388mm31.139cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 618.085mm61.809cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 733.009N/mm747.461Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 509.725N/mm519.775Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 4,959,123N505689.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 137,121N13982.4Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 9460.0mm946.0cm

piDeg=[22.234610135922413] piRad=[0.38806715476915005] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=25000 (cm), Syt=228 MPa, MAWP=2.19425 (MPa), HT_UPPCOL = 47300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
025000.0001.755410971.2510971.2510971.25223.90 < OK 22848.1248.2149.00.091.800000
P16.424922.177.90.00081.756210971.257.162.3810978.4110973.63224.00 < OK 22848.1448.2349.00.091.750.0280.0090.0050.002
P219.224304.7695.30.00681.762210971.2564.1321.1011035.3810992.35222.50 < OK 22848.3148.4049.50.092.410.2510.0830.0420.014
P33223100.61899.40.01861.77410971.25176.2256.6111147.4711027.86224.00 < OK 22848.6348.7249.50.091.750.690.2220.1150.037
P441.521861.93138.10.03081.786210971.25293.1191.5711264.3611062.82223.30 < OK 22848.9749.0650.00.092.061.1480.3590.1910.06
P58713154.211845.80.11621.871610971.251198.04254.0512169.2911225.30223.35 < OK 22851.4351.4152.5-0.022.044.6910.9950.7820.166
P69012500.012500.00.12261.87810971.251276.91255.38470.30113.44733.01509.7212605.0210493.62223.36 < OK 22851.4351.5952.50.162.03510.8330.167Column Attached Equator Plate
138.53138.121861.90.21441.969810971.251239.181440.7212210.4312411.97223.86 < OK 22854.0054.1155.00.111.814.8525.6410.8090.94
P71481899.423100.60.22651.981910971.251356.071475.6812327.3212446.93223.20 < OK 22854.3354.4555.50.122.115.315.7780.8850.963
P8160.8695.324304.70.23831.993710971.251468.161511.1812439.4112482.43222.52 < OK 22854.6554.7756.00.122.405.7495.9170.9580.986
P9173.677.924922.10.24441.999810971.251525.121529.9012496.3712501.15223.19 < OK 22854.8254.9456.00.122.115.9725.9910.9950.998
P10180025000.00.24522.000610971.251532.291532.2912503.5412503.54223.28 < OK 22854.8454.9656.00.122.076611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 88
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 1264251.104
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 25000
MRA(sWt[tid][20][10])= 1963.496
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =14Columns
2. gCol[tid][2] =Column ODOD =1066.8mm
3. gCol[tid][3] =Column thkthk =15.09mm
4. gCol[tid][4] =Tank HeightHtank =15500mm
5. gCol[tid][5] =Upper Column HeightUCHT =4730mm
6. gCol[tid][6] =Lower Column HeightLCHT =10770mm
7. gCol[tid][7] =Column P.C.DPCD =24530mm
8. gCol[tid][8] =Brace AngleBRang =26.8767deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =11.1275deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-65t78 ~ 84SHT881264.2511542.386000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt84, t17¡¿3651¡¿4730SHT1442.94547.240000,000000,0002
3LOWER COLUMN (PIPE)null¨ª1066.8¡¿15.09t ¡¿ 10770LPCS1459.01059.010000,000000,0003
4BRACE ( PIPE, ¥è= 26.8767 deg.)null¨ª0¡¿0t ¡¿ 12074LPCS28000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-65(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-65PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL1441366.2061648.635000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. ¾ËÁ¦¸®Rev. No.[AAA4] 
Design Code : Div. 1, Di = 11000 mm, CA = 1.5 mm, SG = 0.536, Pg= 21.9239 kg/cm2(=2150 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2870.8 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 100 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o11003.0002150.02150.038.9338.9840.00.7+0.322.20832.29481.0¥òeq = 153.6131 / 8
P115.0o15.0o10815.5002150.038.9338.9840.00.7+0.322.20832.29481.0¥òeq = 153.6132 / 8
P230.0o45.0o9391.6002150.038.9338.9840.00.7+0.322.20832.29481.0¥òeq = 153.6133 / 8
P345.0o90.0o5501.52100.011.02161.039.1839.1740.50.7+0.122.19732.29481.0¥òeq = 154.6184 / 8
45.0o135.0o1611.45990.131.52181.539.4839.5340.50.7+0.272.20542.32351.0¥òeq = 153.8666 / 8
P430.0o165.0o187.57414.039.02189.039.6139.6640.50.7+0.142.19792.32351.0¥òeq = 154.3937 / 8
P515.0o180.0o07601.540.02190.039.6339.6840.50.7+0.122.19692.32352.19692.29481.0¥òeq = 154.4628 / 8
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =2.1500MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =2.1969MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =2.2948MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. ¾ËÁ¦¸®Rev. No.[AAA4] 
Design Code : Div. 1, Di = 11000 mm, CA = 1.5 mm, SG = 0.536, Pg= 21.9239 kg/cm2(=2150 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2856 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 100 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o11000.0002856.02856.020.5921.0421.9840.02.20832.2948¥òeq = 347.7941 / 8
P115.0o15.0o10812.6187.41.82857.820.6021.0521.9940.02.20832.2948¥òeq = 348.0922 / 8
P230.0o45.0o9389.11610.915.82871.820.7121.1622.0940.02.20832.2948¥òeq = 350.3583 / 8
P345.0o90.0o5500.05500.053.92909.920.9921.4422.3740.52.19732.2948¥òeq = 348.4764 / 8
45.0o135.0o1610.99389.192.12948.121.2721.7222.6640.52.20542.3235¥òeq = 352.3336 / 8
P430.0o165.0o187.410812.6106.02962.021.3721.8222.7640.52.19792.3235¥òeq = 354.527 / 8
P515.0o180.0o011000.0107.92963.921.3921.8422.7740.52.19692.3235¥òeq = 354.8098 / 8
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =2.1500at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.795028.5011
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.1969at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.856029.1231
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.2948at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =2.983230.4202


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. ¾ËÁ¦¸®Rev. No.[AAA4] 
Design Code : Div. 1, Di = 11000 mm, CA = 1.5 mm, SG = 0.536, Pg= 21.9239 kg/cm2(=2150 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2856 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 100 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o11003.00011000.00038.5040.02.20832.2948630.35431 / 8
P115.0o15.0o10815.50010812.6187.41.838.5040.02.20832.2948630.35432 / 8
P230.0o45.0o9391.6009389.11610.915.838.5040.02.20832.2948630.35433 / 8
P345.0o90.0o5501.52100.011.05500.05500.053.938.5040.02.19732.2948630.35434 / 8
45.0o135.0o1611.45990.131.51610.99389.192.139.0040.52.20542.3235646.72276 / 8
P430.0o165.0o187.57414.039.0187.410812.6106.039.0040.52.19792.3235646.72277 / 8
P515.0o180.0o07601.540.0011000.0107.939.0040.52.19692.3235646.72278 / 8
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =2.1500at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.795028.5011
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =2.1969at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =2.856029.1231
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =2.2948at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =2.983230.4202
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =102.9698SA537-CL2
Maximum. Allowable External PressureMAEP =630.35436.4278CS-4
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=630.3543 kPa)
¡Ü Shell MaterialMATL =SA537-CL2
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =415.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 373.5 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =158.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =158.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-4 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 38.5 mm
Outside Radius of tank top headRo = 5540.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0008687
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-4)Factor B =90.70553 MPa
Design External Pressure, ¡¡Pe = 1.05 (kg/cm©÷)Pe =102.9698 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =630.3543 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. ¾ËÁ¦¸®Rev. No.[AAA4] 
Design Code : Div. 1, Di = 11000 mm, CA = 1.5 mm, SG = 0.536, Pg= 21.9239 kg/cm2(=2150 kPa), Pe= 1.05 kg/cm2(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2856 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 100 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o38.9339.021.0421.9817.0140.00.7+0.32#145.040.02879.88639.437,42222,2651 / 8
P115.0o15.0o38.9339.021.0521.9917.0140.00.7+0.322 / 8
P230.0o45.0o38.9339.021.1622.0917.0140.00.7+0.323 / 8
P345.0o90.0o39.1839.221.4422.3717.0140.50.7+0.12#290.040.52879.88739.4127,12185,4574 / 8
45.0o135.0o39.4839.521.7222.6617.0140.50.7+0.276 / 8
P430.0o165.0o39.6139.721.8222.7617.0140.50.7+0.14#345.040.52879.88639.437,51422,5437 / 8
P515.0o180.0o39.6339.721.8422.7717.0140.50.7+0.128 / 8
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [5 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 4. TKKRev. No.[AAA4] 
Design Code : Div. 2, Di = 25000 mm, CA = 3 mm, SG = 0.6, Pg= 17.9 kg/cm©÷(=1755.39 kPa), Pe= 1.05 kg/cm©÷(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2405.5 kPa
Material : SA516-65, EXTERNAL CHART NO. [CS-2], DTEMP = 87 ¡É, Sd = 148.486 MPa, St = 228 MPa, Samb = 161 MPa, LSR = Samb/Sd = 1.084, Ft = 450 MPa, Fy = 240 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o76.9177.166.1168.8035.9678.00.7+0.18#119.278.02792.58377.6313,60840,8251 / 13
P16.4o6.4o76.9177.166.1468.8335.9678.00.7+0.182 / 13
P212.8o19.2o76.9177.166.3068.9935.9678.00.7+0.183 / 13
P312.8o32.0o77.1377.466.6369.3235.9678.50.7+0.45#212.878.52792.59567.7412,71050,8414 / 13
P49.5o41.5o77.4477.766.9669.6535.9678.50.7+0.14#39.578.51858.68726.696,66159,9485 / 13
P545.5o87.0o79.6679.869.3272.0135.9681.00.7+0.47#445.581.02801.19970.02815,531434,8616 / 13
P63.0o90.0o79.4180.069.4972.1835.96TD90USED0.7+0.31#551.583.52805.011335.62818,416515,6417 / 13
48.5o138.5o82.0882.372.0274.7235.9683.50.7+0.479 / 13
P79.5o148.0o82.3882.672.3675.0535.9683.50.7+0.16#69.583.51858.68726.697,08563,76710 / 13
P812.8o160.8o82.6882.972.6875.3735.9684.00.7+0.37#712.884.02792.59367.7413,60154,40311 / 13
P912.8o173.6o82.8383.172.8575.5435.9684.00.7+0.21#819.284.02792.58377.6314,65543,96512 / 13
P106.4o180.0o82.8583.172.8775.5635.9684.00.7+0.1913 / 13
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 17.01 mm; Pe :102.97 kPa ¡Â Pa = 103.05 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003514; Factor_B = 36.654 MPa


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=11000 (cm), Sd=158 MPa, Pg=2.15 (MPa), HT_UPPCOL = 24300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=59.253 (N-mm), N¥õ=1.475 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 11000mm1100.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 5501.5mm550.15cm
4¡¡L = Design Liquid levelL = 7600mm760.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 4,014,814N409397.1Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 158MPaS = 158.0MPa1611.152Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 2.15MPa21.924Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.5360.536
10¡¡¥ã = Liquid Density¥ã = 5.256364E-6N/mm©ø536.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 558.8mm55.88cm
12¡¡N = Number of Support ColumnN = 6.0columns6columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.21995degree0.45762radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 67.5601degree1.17915radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99216540.9921654
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.17941911.1794191
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44181820.4418182
20¡¡C5 = 22 / ¥õC5 = 0.83905590.8390559
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44181820.4418182
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 5914.113N-mm60.307Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 59.253N-mm0.604Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 1.475N-mm0.015Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 6115.65N/mm6236.227Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 5769.41N/mm5883.161Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 39.68mm3.968cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 39.18mm3.918cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 152.636MPa1556.454Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 321,265,734N-mm3275.999¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 109,713,630N-mm1118.768¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 162,866,854N-mm1660.78¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 47,590,312N-mm485.286¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 187.607N/mm191.306Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 189,350,383N-mm1930.837¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 105,461,929N-mm1075.412¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 40,876,328mm©ø40.876¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 1,248,488,933mm©ø1248.489¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.7667E-52.7667E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.903102E-37.903102E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1236.995mm123.699cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 45.326N/mm46.22Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 17,191,781N-mm175.307¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 8,715,437N-mm88872.724Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 379,290mm©ø3792.899cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 72,072,708mm©ø72.073¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 190.02mm19.002cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 376.059mm37.606cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 146.18N/mm149.062Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 103.707N/mm105.752Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 514,170N52430.8Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 10017.238N1021.5Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 4861.325mm486.133cm

piDeg=[26.219945947374477] piRad=[0.45762438647662845] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=11000 (cm), Sd=158 MPa, Pg=2.15 (MPa), HT_UPPCOL = 24300.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
011003.0002.155914.115914.115914.11153.61 < OK 15838.9338.9840.00.052.780000
P11510815.5002.155914.115914.115914.11153.61 < OK 15838.9338.9840.00.052.780000
P2459391.6002.155914.115914.115914.11153.61 < OK 15838.9338.9840.00.052.780000
P3905501.52100.00.01102.1615914.1159.251.47187.6145.33146.18103.716115.655769.41154.62 < OK 15839.1839.1740.0-0.012.142.2350.0560.3720.009Column Attached Equator Plate
1351611.45990.10.03152.18155914.1174.3098.935988.416013.04153.87 < OK 15839.4839.5340.50.052.622.8023.7310.4670.622
P4165187.57414.00.03902.1895914.11105.84108.566019.956022.67154.39 < OK 15839.6139.6640.50.052.283.9924.0940.6650.682
P518007601.50.04002.195914.11109.91109.916024.026024.02154.46 < OK 15839.6339.6840.50.052.244.1454.1450.6910.691


S-Tank Engineering
Spherical Tank Calculation [6 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=11000 (cm), Syt=373.5 MPa, MAWP=2.795 (MPa), HT_UPPCOL = 24500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=247.209 (N-mm), N¥õ=49.442 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 11000mm1100.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 5500mm550.0cm
4¡¡L = Hydrostatic-test Water LevelL = 11000mm1100.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 7,492,780N764051.0Kg
7¡¡S = Allowable Stress for the Design Condition SA537-CL2, Sd = 373.5MPaS = 373.5MPa3808.64Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 2.15MPa21.924Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 558.8mm55.88cm
12¡¡N = Number of Support ColumnN = 6.0columns6columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.45242degree0.46168radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99169460.9916946
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.18912631.1891263
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44545450.4454545
20¡¡C5 = 22 / ¥õC5 = 0.83168180.8316818
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44545450.4454545
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 5912.5N-mm60.291Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 247.209N-mm2.521Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 49.442N-mm0.504Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 6421.21N/mm6547.812Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 5691.45N/mm5803.664Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 16.63mm1.663cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 16.33mm1.633cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 348.476MPa3553.466Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 599,409,414N-mm6112.275¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 203,231,260N-mm2072.382¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 303,872,824N-mm3098.64¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 88,358,728N-mm901.008¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 343.867N/mm350.647Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 352,763,420N-mm3597.186¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 196,279,339N-mm2001.492¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 23,082,087mm©ø23.082¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 1,279,499,671mm©ø1279.5¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.8912E-52.8912E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 8.113675E-38.113675E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1247.233mm124.723cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 82.363N/mm83.987Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 32,049,292N-mm326.812¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 16,247,507N-mm165.678¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 389,121mm©ø3891.21cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 75,223,250mm©ø75.223¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 193.316mm19.332cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 382.509mm38.251cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 270.489N/mm275.822Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 192.509N/mm196.305Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 962,323N98129.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 19027.244N1940.2Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 4900.0mm490.0cm

piDeg=[26.452424118557175] piRad=[0.46168189600278153] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=11000 (cm), Syt=373.5 MPa, MAWP=2.795 (MPa), HT_UPPCOL = 24500.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
011000.0002.155912.55912.505912.50347.79 < OK 373.515.8315.8417.00.016.880000
P11510812.6187.40.00182.15185912.57.602.515920.105915.01348.09 < OK 373.515.8415.8517.00.016.800.1540.0510.0260.008
P2459389.11610.90.01582.16585912.566.4120.485978.915932.98350.36 < OK 373.515.9515.9617.00.016.201.3430.4140.2240.069
P3905500.05500.00.05392.20395912.5247.2149.44343.8782.36270.49192.516421.215691.45348.48 < OK 373.516.3316.2417.5-0.096.70510.8330.167Column Attached Equator Plate
1351610.99389.10.09212.24215912.5230.24276.176142.746188.67352.33 < OK 373.516.5116.5217.50.015.674.6575.5860.7760.931
P4165187.410812.60.10602.2565912.5289.06294.146201.566206.64354.52 < OK 373.516.6116.6217.50.015.085.8465.9490.9740.992
P5180011000.00.10792.25795912.5296.65296.656209.156209.15354.81 < OK 373.516.6216.6317.50.015.006611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 18
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 130264.56
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 11000
MRA(sWt[tid][20][10])= 410.609
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =6Columns
2. gCol[tid][2] =Column ODOD =558.8mm
3. gCol[tid][3] =Column thkthk =6.35mm
4. gCol[tid][4] =Tank HeightHtank =8500mm
5. gCol[tid][5] =Upper Column HeightUCHT =2450mm
6. gCol[tid][6] =Lower Column HeightLCHT =6050mm
7. gCol[tid][7] =Column P.C.DPCD =10740mm
8. gCol[tid][8] =Brace AngleBRang =41.5924deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.4821deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA537-CL2t40 ~ 0SHT18130.265158.923000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt0, t8¡¿2056¡¿2450SHT61.9812.179000,000000,0002
3LOWER COLUMN (PIPE)null¨ª558.8¡¿6.35t ¡¿ 6050LPCS63.1403.140000,000000,0003
4BRACE ( PIPE, ¥è= 41.5924 deg.)null¨ª0¡¿0t ¡¿ 8089LPCS12000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA537-CL2(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA537-CL2PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL42135.386164.242000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. ·Ôµ¥ G1Rev. No.[AAA4] 
Design Code : Div. 1, Di = 16840 mm, CA = 1.5 mm, SG = 0.646, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 0.517 kg/cm2(=50.7 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=809.1 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 80 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o16843.000588.4588.419.4519.4620.50.7+0.340.62240.67161.0¥òeq = 130.4011 / 11
P110.0o10.0o16715.100588.419.4519.4620.50.7+0.340.62240.67161.0¥òeq = 130.4012 / 11
P220.0o30.0o15714.700588.419.4519.4620.50.7+0.340.62240.67161.0¥òeq = 130.4013 / 11
P320.0o50.0o13834.700588.419.4519.4620.50.7+0.340.62240.67161.0¥òeq = 130.4014 / 11
P416.0o66.0o11846.81634.710.4598.819.7819.7821.00.7+0.520.62840.68801.0¥òeq = 129.3395 / 11
P524.0o90.0o8421.55060.032.1620.520.6820.4422.50.7+0.120.62310.70441.0¥òeq = 132.3596 / 11
40.0o130.0o3008.310473.266.3654.721.4921.4922.50.7+0.310.62160.73711.0¥òeq = 131.3338 / 11
P620.0o150.0o1128.312353.278.3666.721.8421.8523.00.7+0.450.62600.75351.0¥òeq = 130.579 / 11
P720.0o170.0o127.913353.684.6673.022.0322.0523.00.7+0.250.61970.75351.0¥òeq = 131.80610 / 11
P810.0o180.0o013481.585.4673.822.0622.0723.00.7+0.230.61890.75350.61890.67161.0¥òeq = 131.96411 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.6189MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.6716MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. ·Ôµ¥ G1Rev. No.[AAA4] 
Design Code : Div. 1, Di = 16840 mm, CA = 1.5 mm, SG = 0.646, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 0.517 kg/cm2(=50.7 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=804.6 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 80 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o16840.000804.6804.613.7714.4815.7120.50.62240.6716¥òeq = 215.4051 / 11
P110.0o10.0o16712.1127.91.3805.913.7914.5015.7420.50.62240.6716¥òeq = 215.8652 / 11
P220.0o30.0o15711.91128.111.1815.713.9614.6815.9120.50.62240.6716¥òeq = 210.3393 / 11
P320.0o50.0o13832.33007.729.5834.114.3015.0116.2420.50.62240.6716¥òeq = 216.9914 / 11
P416.0o66.0o11844.74995.349.0853.614.6515.3616.5921.00.62840.6880¥òeq = 215.295 / 11
P524.0o90.0o8420.08420.082.6887.215.2515.9717.2022.50.62310.7044¥òeq = 219.9066 / 11
40.0o130.0o3007.713832.3135.6940.216.2116.9218.1522.50.62160.7371¥òeq = 217.8878 / 11
P620.0o150.0o1128.115711.9154.1958.716.5417.2518.4923.00.62600.7535¥òeq = 215.5949 / 11
P720.0o170.0o127.916712.1163.9968.516.7217.4318.6623.00.61970.7535¥òeq = 218.42410 / 11
P810.0o180.0o016840.0165.1969.716.7417.4518.6823.00.61890.7535¥òeq = 218.78811 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.6189at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.80468.2046
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.6716at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =0.87318.9031


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. ·Ôµ¥ G1Rev. No.[AAA4] 
Design Code : Div. 1, Di = 16840 mm, CA = 1.5 mm, SG = 0.646, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 0.517 kg/cm2(=50.7 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=804.6 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 80 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o16843.00016840.00019.0020.50.62240.671662.97111 / 11
P110.0o10.0o16715.10016712.1127.91.319.0020.50.62240.671662.97112 / 11
P220.0o30.0o15714.70015711.91128.111.119.0020.50.62240.671662.97113 / 11
P320.0o50.0o13834.70013832.33007.729.519.0020.50.62240.671662.97114 / 11
P416.0o66.0o11846.81634.710.411844.74995.349.019.5021.00.62840.688066.32305 / 11
P524.0o90.0o8421.55060.032.18420.08420.082.620.0021.50.62310.704469.76156 / 11
40.0o130.0o3008.310473.266.33007.713832.3135.621.0022.50.62160.737176.89778 / 11
P620.0o150.0o1128.312353.278.31128.115711.9154.121.5023.00.62600.753580.59559 / 11
P720.0o170.0o127.913353.684.6127.916712.1163.921.5023.00.61970.753580.595510 / 11
P810.0o180.0o013481.585.4016840.0165.121.5023.00.61890.753580.595511 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.6189at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.80468.2046
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.6716at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =0.87318.9031
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =50.7004SA516-70
Maximum. Allowable External PressureMAEP =62.97110.6421CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(0.5 atm = 50.6625 kPa) condition.
Harf Vacuum(0.5 atm = 50.6625 kPa) < MAEP(MinMAEP=62.9711 kPa)
¡Ü Shell MaterialMATL =SA516-70
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =260.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 234.0 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 19.0 mm
Outside Radius of tank top headRo = 8440.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0002814
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-2)Factor B =27.97408 MPa
Design External Pressure, ¡¡Pe = 0.517 (kg/cm©÷)Pe =50.7004 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =62.9711 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. ·Ôµ¥ G1Rev. No.[AAA4] 
Design Code : Div. 1, Di = 16840 mm, CA = 1.5 mm, SG = 0.646, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 0.517 kg/cm2(=50.7 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=804.6 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 80 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.4519.514.4815.7118.5520.50.7+0.34#130.020.52939.18817.433,96211,8861 / 11
P110.0o10.0o19.4519.514.5015.7418.5520.50.7+0.342 / 11
P220.0o30.0o19.4519.514.6815.9118.5520.50.7+0.343 / 11
P320.0o50.0o19.4519.515.0116.2418.5520.50.7+0.34#220.020.52939.19321.843,43013,7214 / 11
P416.0o66.0o19.7819.815.3616.5918.5521.00.7+0.52#316.021.02685.08817.462,88917,3345 / 11
P524.0o90.0o20.6820.415.9717.2018.5522.50.7+0.12#464.022.52939.19505.2184,58882,5756 / 11
40.0o130.0o21.4921.516.9218.1518.5522.50.7+0.318 / 11
P620.0o150.0o21.8421.817.2518.4918.5523.00.7+0.45#520.023.02939.19121.843,84915,3949 / 11
P720.0o170.0o22.0322.017.4318.6618.5523.00.7+0.25#630.023.02939.18817.434,44513,33510 / 11
P810.0o180.0o22.0622.117.4518.6818.5523.00.7+0.2311 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [6 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 5. ¾ËÁ¦¸®Rev. No.[AAA4] 
Design Code : Div. 1, Di = 11000 mm, CA = 1.5 mm, SG = 0.536, Pg= 21.9239 kg/cm©÷(=2150 kPa), Pe= 1.05 kg/cm©÷(=102.97 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=2856 kPa
Material : SA537-CL2, EXTERNAL CHART NO. [CS-4], DTEMP = 100 ¡É, Sd = 158 MPa, St = 373.5 MPa, Samb = 158 MPa, LSR = Samb/Sd = 1.0, Ft = 550 MPa, Fy = 415 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o38.9339.021.0421.9817.0140.00.7+0.32#145.040.02879.88639.437,42222,2651 / 8
P115.0o15.0o38.9339.021.0521.9917.0140.00.7+0.322 / 8
P230.0o45.0o38.9339.021.1622.0917.0140.00.7+0.323 / 8
P345.0o90.0o39.1839.221.4422.3717.01TD90USED0.7+0.12#290.040.52879.88739.4127,12185,4574 / 8
45.0o135.0o39.4839.521.7222.6617.0140.50.7+0.276 / 8
P430.0o165.0o39.6139.721.8222.7617.0140.50.7+0.14#345.040.52879.88639.437,51422,5437 / 8
P515.0o180.0o39.6339.721.8422.7717.0140.50.7+0.128 / 8
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 18.55 mm; Pe :50.7 kPa ¡Â Pa = 50.73 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0002526; Factor_B = 25.106 MPa


S-Tank Engineering
Spherical Tank Calculation [7 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=16840 (cm), Sd=138 MPa, Pg=0.5884 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=253.713 (N-mm), N¥õ=16.243 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 16840mm1684.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 8421.5mm842.15cm
4¡¡L = Design Liquid levelL = 13480mm1348.0cm
5¡¡CA = Corrosion Allowance CA = 1.5mm0.15cm
6¡¡Wt = Total Weight at Operating ConditionWt = 15,778,045N1608912.8Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6460.646
10¡¡¥ã = Liquid Density¥ã = 6.335096E-6N/mm©ø646.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.16194degree0.43916radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 53.0697degree0.92624radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99425650.9942565
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.13499911.1349991
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.42517810.4251781
20¡¡C5 = 22 / ¥õC5 = 0.87433640.8743364
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.42517810.4251781
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2477.605N-mm25.265Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 253.713N-mm2.587Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 16.243N-mm0.166Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 2897.12N/mm2954.24Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2233.14N/mm2277.169Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.07mm2.207cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 20.68mm2.068cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 123.124MPa1255.515Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 850,075,515N-mm8668.358¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 312,354,708N-mm3185.132¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 427,643,866N-mm4360.754¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 145,441,382N-mm1483.089¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 224.47N/mm228.896Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 490,670,753N-mm5003.449¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 260,111,835N-mm2652.403¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 50,275,965mm©ø50.276¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,977,612,083mm©ø3977.612¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.2531E-52.2531E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.990277E-36.990277E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1819.658mm181.966cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 58.667N/mm59.824Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 46,152,076N-mm470.62¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 23,217,528N-mm236.753¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 786,674mm©ø7866.736cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 210,904,997mm©ø210.905¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 268.097mm26.81cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 531.022mm53.102cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 260.713N/mm265.853Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 179.79N/mm183.335Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,324,178N135028.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 36653.01N3737.6Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7161.276mm716.128cm

piDeg=[25.16194007327985] piRad=[0.43915870046823663] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=16840 (cm), Sd=138 MPa, Pg=0.5884 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
016843.0000.58842477.612477.612477.61130.40 < OK 13819.4519.4620.50.015.510000
P11016715.1000.58842477.612477.612477.61130.40 < OK 13819.4519.4620.50.015.510000
P23015714.7000.58842477.612477.612477.61130.40 < OK 13819.4519.4620.50.015.510000
P35013834.7000.58842477.612477.612477.61130.40 < OK 13819.4519.4620.50.015.510000
P46611846.81634.70.01040.59882477.6182.434.782560.042482.39129.34 < OK 13819.7819.7821.06.281.1010.0640.1830.011
P5908421.55060.00.03210.62052477.61253.7116.24224.4758.67260.71179.792897.122233.14132.36 < OK 13820.6820.4421.5-0.244.093.3880.2170.5650.036Column Attached Equator Plate
1303008.310473.20.06630.65472477.61236.35322.412713.952800.02131.33 < OK 13821.4921.4922.54.833.1564.3060.5260.718
P61501128.312353.20.07830.66672477.61314.12344.942791.732822.54130.57 < OK 13821.8421.8523.00.015.384.1954.6060.6990.768
P7170127.913353.60.08460.6732477.61354.50357.922832.112835.53131.81 < OK 13822.0322.0423.00.014.494.7344.780.7890.797
P8180013481.50.08540.67382477.61359.63359.632837.232837.23131.96 < OK 13822.0622.0723.00.014.374.8034.8030.80.8


S-Tank Engineering
Spherical Tank Calculation [7 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=16840 (cm), Syt=234 MPa, MAWP=0.76492 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=579.38 (N-mm), N¥õ=115.876 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 16840mm1684.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 8420mm842.0cm
4¡¡L = Hydrostatic-test Water LevelL = 16840mm1684.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 25,721,643N2622877.6Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 234MPaS = 234.0MPa2386.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 863.6mm86.36cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.16194degree0.43916radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99425650.9942565
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.13499911.1349991
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.42517810.4251781
20¡¡C5 = 22 / ¥õC5 = 0.87433640.8743364
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.42517810.4251781
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2477.164N-mm25.26Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 579.38N-mm5.908Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 115.876N-mm1.182Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3326.87N/mm3392.463Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2167.95N/mm2210.694Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 13.56mm1.356cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 12.69mm1.269cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 204.74MPa2087.767Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,385,561,051N-mm14128.791¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 509,115,379N-mm5191.532¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 697,028,292N-mm7107.71¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 237,058,838N-mm2417.327¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 365.999N/mm373.215Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 799,757,517N-mm8155.257¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 423,963,308N-mm4323.223¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 38,239,826mm©ø38.24¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,975,487,038mm©ø3975.487¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.2531E-52.2531E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 6.990277E-36.990277E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1819.334mm181.933cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 95.675N/mm97.561Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 75,237,916N-mm767.213¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 37,849,618N-mm385.959¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 786,393mm©ø7863.933cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 210,792,320mm©ø210.792¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 268.049mm26.805cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 530.927mm53.093cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 425.094N/mm433.475Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 293.13N/mm298.909Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 2,158,573N220113.2Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 59763.019N6094.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 7160.0mm716.0cm

piDeg=[25.16194007327985] piRad=[0.43915870046823663] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=16840 (cm), Syt=234 MPa, MAWP=0.76492 (MPa), HT_UPPCOL = 35800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
016840.0000.58842477.162477.162477.16215.40 < OK 23410.5910.5911.57.950000
P11016712.1127.90.00130.58972477.167.932.632485.092479.80215.86 < OK 23410.6110.6111.57.750.0680.0230.0110.004
P23015711.91128.10.01110.59952477.1670.4222.732547.582499.89210.34 < OK 23410.7910.7912.010.110.6080.1960.1010.033
P35013832.33007.70.02950.61792477.16190.7757.592667.932534.75216.99 < OK 23411.1311.1212.0-0.017.271.6460.4970.2740.083
P46611844.74995.30.04900.63742477.16323.8588.622801.012565.79215.29 < OK 23411.5011.4712.5-0.038.002.7950.7650.4660.127
P5908420.08420.00.08260.6712477.16579.38115.88366.0095.67425.09293.133326.872167.95219.91 < OK 23412.6912.0813.5-0.616.02510.8330.167Column Attached Equator Plate
1303007.713832.30.13560.7242477.16504.49637.672981.653114.83217.89 < OK 23413.0413.0314.0-0.016.894.3545.5030.7260.917
P61501128.115711.90.15410.74252477.16624.84672.533102.003149.69215.59 < OK 23413.3613.3614.57.875.3925.8040.8990.967
P7170127.916712.10.16390.75232477.16687.33692.623164.493169.79218.42 < OK 23413.5313.5414.50.016.665.9325.9770.9890.996
P8180016840.00.16510.75352477.16695.26695.263172.423172.42218.79 < OK 23413.5613.5614.56.506611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 38
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 154245.181
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 16840
MRA(sWt[tid][20][10])= 890.91
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =9Columns
2. gCol[tid][2] =Column ODOD =863.6mm
3. gCol[tid][3] =Column thkthk =9.65mm
4. gCol[tid][4] =Tank HeightHtank =11420mm
5. gCol[tid][5] =Upper Column HeightUCHT =3580mm
6. gCol[tid][6] =Lower Column HeightLCHT =7840mm
7. gCol[tid][7] =Column P.C.DPCD =16430mm
8. gCol[tid][8] =Brace AngleBRang =35.6314deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.669deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-70t20.5 ~ 23SHT38154.245188.179000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt23, t12¡¿3013¡¿3580SHT910.09011.099000,000000,0002
3LOWER COLUMN (PIPE)null¨ª863.6¡¿9.65t ¡¿ 7840LPCS914.33914.339000,000000,0003
4BRACE ( PIPE, ¥è= 35.6314 deg.)null¨ª0¡¿0t ¡¿ 9646LPCS18000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-70(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-70PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL74178.674213.617000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. ¸»·¹À̽þÆRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=1076.5 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o15656.000588.4588.419.6919.7026.50.7+0.380.82810.93411.0¥òeq = 131.61 / 11
P110.0o10.0o15537.100588.419.6919.7026.50.7+0.380.82810.93411.0¥òeq = 131.62 / 11
P220.0o30.0o14607.200588.419.6919.7026.50.7+0.380.82810.93411.0¥òeq = 131.63 / 11
P320.0o50.0o12859.71223.37.5595.919.9019.9126.50.7+0.380.82060.93411.0¥òeq = 129.5864 / 11
P416.0o66.0o11011.93071.118.7607.120.2320.2326.50.7+0.380.80940.93411.0¥òeq = 132.125 / 11
P524.0o90.0o7828.06255.038.1626.520.9920.7826.50.7+0.380.79000.93411.0¥òeq = 130.6616 / 11
40.0o130.0o2796.311286.768.8657.221.6421.6526.50.7+0.380.75930.93411.0¥òeq = 131.9488 / 11
P620.0o150.0o1048.813034.279.4667.821.9421.9526.50.7+0.380.74870.93411.0¥òeq = 130.7019 / 11
P720.0o170.0o118.913964.185.1673.522.1022.1126.50.7+0.380.74300.93411.0¥òeq = 131.80610 / 11
P810.0o180.0o014083.085.8674.222.1222.1326.50.7+0.380.74230.93410.74230.93411.0¥òeq = 131.94811 / 11
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.5884MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =0.7423MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =0.9341MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. ¸»·¹À̽þÆRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o15650.000965.0965.012.7916.1420.3126.50.82810.9341¥òeq = 209.2841 / 11
P110.0o10.0o15531.1118.91.2966.212.8116.1620.3326.50.82810.9341¥òeq = 209.6982 / 11
P220.0o30.0o14601.61048.410.3975.312.9616.3120.4826.50.82810.9341¥òeq = 212.9653 / 11
P320.0o50.0o12854.82795.227.4992.413.2516.6020.7726.50.82060.9341¥òeq = 209.6894 / 11
P416.0o66.0o11007.74642.345.51010.513.5516.9021.0726.50.80940.9341¥òeq = 216.2145 / 11
P524.0o90.0o7825.07825.076.71041.714.0817.4221.5926.50.79000.9341¥òeq = 216.8346 / 11
40.0o130.0o2795.212854.8126.11091.114.9018.2522.4226.50.75930.9341¥òeq = 215.1628 / 11
P620.0o150.0o1048.414601.6143.21108.215.1918.5322.7026.50.74870.9341¥òeq = 220.1999 / 11
P720.0o170.0o118.915531.1152.31117.315.3418.6922.8626.50.74300.9341¥òeq = 214.66810 / 11
P810.0o180.0o015650.0153.51118.515.3618.7122.8826.50.74230.9341¥òeq = 215.00611 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7423at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.96509.8403
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9341at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.214312.3824


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. ¸»·¹À̽þÆRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o15656.00015650.00023.5026.50.82810.9341111.35841 / 11
P110.0o10.0o15537.10015531.1118.91.223.5026.50.82810.9341111.35842 / 11
P220.0o30.0o14607.20014601.61048.410.323.5026.50.82810.9341111.35843 / 11
P320.0o50.0o12859.71223.37.512854.82795.227.423.5026.50.82060.9341111.35844 / 11
P416.0o66.0o11011.93071.118.711007.74642.345.523.5026.50.80940.9341111.35845 / 11
P524.0o90.0o7828.06255.038.17825.07825.076.723.5026.50.79000.9341111.35846 / 11
40.0o130.0o2796.311286.768.82795.212854.8126.123.5026.50.75930.9341111.35848 / 11
P620.0o150.0o1048.813034.279.41048.414601.6143.223.5026.50.74870.9341111.35849 / 11
P720.0o170.0o118.913964.185.1118.915531.1152.323.5026.50.74300.9341111.358410 / 11
P810.0o180.0o014083.085.8015650.0153.523.5026.50.74230.9341111.358411 / 11
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.5884at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.76497.8000
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =0.7423at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =0.96509.8403
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =0.9341at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =1.214312.3824
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =101.3250SA516-70
Maximum. Allowable External PressureMAEP =111.35841.1355CS-2
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(1 atm = 101.325 kPa) condition.
Full Vacuum(1 atm = 101.325 kPa) < MAEP(MinMAEP=111.3584 kPa)
¡Ü Shell MaterialMATL =SA516-70
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =260.0 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = 234.0 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =138.0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =138.0 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 1.0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-2 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 23.5 mm
Outside Radius of tank top headRo = 7851.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0003741
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-2)Factor B =37.20554 MPa
Design External Pressure, ¡¡Pe = 1.03323 (kg/cm©÷)Pe =101.3250 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =111.3584 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. ¸»·¹À̽þÆRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm2(=588.399 kPa), Pe= 1.033227 kg/cm2(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6919.716.1420.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o19.6919.716.1620.3325.4226.50.7+0.382 / 11
P220.0o30.0o19.6919.716.3120.4825.4226.50.7+0.383 / 11
P320.0o50.0o19.9019.916.6020.7725.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.2320.216.9021.0725.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o20.9920.817.4221.5925.4226.50.7+0.38#464.026.52731.48840.6184,66683,9966 / 11
40.0o130.0o21.6421.618.2522.4225.4226.50.7+0.388 / 11
P620.0o150.0o21.9422.018.5322.7025.4226.50.7+0.38#520.026.52731.48477.243,83015,3199 / 11
P720.0o170.0o22.1022.118.6922.8625.4226.50.7+0.38#630.026.52731.48194.334,42313,27010 / 11
P810.0o180.0o22.1222.118.7122.8825.4226.50.7+0.3811 / 11
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [7 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 6. ·Ôµ¥ G1Rev. No.[AAA4] 
Design Code : Div. 1, Di = 16840 mm, CA = 1.5 mm, SG = 0.646, Pg= 6.0 kg/cm©÷(=588.399 kPa), Pe= 0.517 kg/cm©÷(=50.7 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=804.6 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 80 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.4519.514.4815.7118.5520.50.7+0.34#130.020.52939.18817.433,96211,8861 / 11
P110.0o10.0o19.4519.514.5015.7418.5520.50.7+0.342 / 11
P220.0o30.0o19.4519.514.6815.9118.5520.50.7+0.343 / 11
P320.0o50.0o19.4519.515.0116.2418.5520.50.7+0.34#220.020.52939.19321.843,43013,7214 / 11
P416.0o66.0o19.7819.815.3616.5918.5521.00.7+0.52#316.021.02685.08817.462,88917,3345 / 11
P524.0o90.0o20.6820.415.9717.2018.55TD90USED0.7+0.12#464.022.52939.19505.2184,58882,5756 / 11
40.0o130.0o21.4921.516.9218.1518.5522.50.7+0.318 / 11
P620.0o150.0o21.8421.817.2518.4918.5523.00.7+0.45#520.023.02939.19121.843,84915,3949 / 11
P720.0o170.0o22.0322.017.4318.6618.5523.00.7+0.25#630.023.02939.18817.434,44513,33510 / 11
P810.0o180.0o22.0622.117.4518.6818.5523.00.7+0.2311 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 25.42 mm; Pe :101.32 kPa ¡Â Pa = 101.38 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0003570; Factor_B = 35.499 MPa


S-Tank Engineering
Spherical Tank Calculation [8 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=15650 (cm), Sd=138 MPa, Pg=0.5884 (MPa), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=266.671 (N-mm), N¥õ=31.757 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7828mm782.8cm
4¡¡L = Design Liquid levelL = 14080mm1408.0cm
5¡¡CA = Corrosion Allowance CA = 3.0mm0.3cm
6¡¡Wt = Total Weight at Operating ConditionWt = 13,249,933N1351117.2Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 138MPaS = 138.0MPa1407.208Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.6220.6215
10¡¡¥ã = Liquid Density¥ã = 6.094833E-6N/mm©ø621.5Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.51015degree0.44524radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 36.96007degree0.64507radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99357760.9935776
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.14966191.1496619
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43067090.4306709
20¡¡C5 = 22 / ¥õC5 = 0.86240200.8624020
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43067090.4306709
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2302.998N-mm23.484Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 266.671N-mm2.719Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 31.757N-mm0.324Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 2715.79N/mm2769.335Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2102.43N/mm2143.882Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 22.13mm2.213cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 20.99mm2.099cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 124.128MPa1265.753Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 663,558,731N-mm6766.416¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 240,258,313N-mm2449.953¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 333,813,662N-mm3403.952¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 112,080,716N-mm1142.905¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 197.564N/mm201.459Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 383,081,259N-mm3906.342¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 202,814,847N-mm2068.136¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 44,597,441mm©ø44.597¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,323,586,510mm©ø3323.587¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4129E-52.4129E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.28256E-37.28256E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1714.056mm171.406cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 51.443N/mm52.457Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 36,419,331N-mm371.374¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 18,321,318N-mm186.825¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 707,956mm©ø7079.563cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 181,292,990mm©ø181.293¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 256.079mm25.608cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 507.08mm50.708cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 232.323N/mm236.904Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 160.315N/mm163.476Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,112,960N113490.3Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 32020.074N3265.1Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6742.584mm674.258cm

piDeg=[25.510146359306425] piRad=[0.4452360466355415] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Sd=138 MPa, Pg=0.5884 (MPa), HT_UPPCOL = 33700.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015656.0000.58842303.02303.002303.00131.60 < OK 13819.6919.7020.50.014.640000
P11015537.1000.58842303.02303.002303.00131.60 < OK 13819.6919.7020.50.014.640000
P23014607.2000.58842303.02303.002303.00131.60 < OK 13819.6919.7020.50.014.640000
P35012859.71223.30.00750.59592303.052.965.402355.962308.40129.59 < OK 13819.9019.9121.00.016.100.8510.0870.1420.014
P46611011.93071.10.01870.60712303.0128.0118.512431.012321.51132.12 < OK 13820.2320.2321.04.262.0570.2970.3430.05
P5907828.06255.00.03810.62652303.0266.6731.76197.5651.44232.32160.322715.792102.43130.66 < OK 13820.9920.7822.0-0.215.324.2840.510.7140.085Column Attached Equator Plate
1302796.311286.70.06880.65722303.0233.48305.022536.472608.01131.95 < OK 13821.6421.6522.50.014.393.7514.90.6250.817
P61501048.813034.20.07940.66782303.0298.13323.742601.122626.74130.70 < OK 13821.9421.9523.00.015.294.7895.2010.7980.867
P7170118.913964.10.08510.67352303.0331.69334.542634.692637.54131.81 < OK 13822.1022.1123.00.014.495.3295.3740.8880.896
P8180014083.00.08580.67422303.0335.95335.952638.952638.95131.95 < OK 13822.1222.1323.00.014.395.3975.3970.90.9


S-Tank Engineering
Spherical Tank Calculation [8 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=15650 (cm), Syt=234 MPa, MAWP=0.76492 (MPa), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=500.389 (N-mm), N¥õ=100.078 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 15650mm1565.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 7825mm782.5cm
4¡¡L = Hydrostatic-test Water LevelL = 15650mm1565.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 20,659,047N2106636.5Kg
7¡¡S = Allowable Stress for the Design Condition SA516-70, Sd = 234MPaS = 234.0MPa2386.136Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.588MPa6.0Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 812.8mm81.28cm
12¡¡N = Number of Support ColumnN = 9.0columns9columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 25.5913degree0.44665radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99341810.9934181
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.15307341.1530734
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.43194890.4319489
20¡¡C5 = 22 / ¥õC5 = 0.85966700.8596670
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.43194890.4319489
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 2302.115N-mm23.475Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 500.389N-mm5.103Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 100.078N-mm1.021Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 3029.32N/mm3089.047Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 2040.97N/mm2081.21Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = 12.41mm1.241cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = 11.58mm1.158cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 200.772MPa2047.305Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 1,034,211,828N-mm10546.026¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 373,184,492N-mm3805.423¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 520,276,536N-mm5305.344¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 174,165,027N-mm1775.989¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 306.306N/mm312.345Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 597,095,603N-mm6088.681¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 316,027,050N-mm3222.579¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = 32,164,142mm©ø32.164¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 3,350,271,797mm©ø3350.272¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.4514E-52.4514E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 7.351823E-37.351823E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1718.668mm171.867cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 79.489N/mm81.056Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 56,763,105N-mm578.823¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 28,555,573N-mm291.186¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 714,103mm©ø7141.03cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 183,950,286mm©ø183.95¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 257.596mm25.76cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 510.051mm51.005cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 361.224N/mm368.346Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 249.525N/mm254.445Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 1,737,047N177129.5Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 50257.224N5124.8Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 6760.0mm676.0cm

piDeg=[25.59130479672834] piRad=[0.44665252858432775] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=15650 (cm), Syt=234 MPa, MAWP=0.76492 (MPa), HT_UPPCOL = 33800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
015650.0000.58842302.122302.122302.12209.28 < OK 2349.849.8411.010.560000
P11015531.1118.90.00120.58962302.126.852.272308.962304.39209.70 < OK 2349.869.8611.010.390.0680.0230.0110.004
P23014601.61048.40.01030.59872302.1260.8219.632362.932321.75212.96 < OK 23410.0110.0111.08.990.6080.1960.1010.033
P35012854.82795.20.02740.61582302.12164.7649.742466.872351.85209.69 < OK 23410.3110.3011.5-0.0110.391.6460.4970.2740.083
P46611007.74642.30.04550.63392302.12279.7076.542581.812378.65216.21 < OK 23410.6310.6011.5-0.037.602.7950.7650.4660.127
P5907825.07825.00.07670.66512302.12500.39100.08306.3179.49361.22249.523029.322040.97216.83 < OK 23411.5811.1212.5-0.467.34510.8330.167Column Attached Equator Plate
1302795.212854.80.12610.71452302.12435.71550.732737.822852.85215.16 < OK 23411.9511.9513.08.054.3545.5030.7260.917
P61501048.414601.60.14320.73162302.12539.65580.842841.772882.95220.20 < OK 23412.2312.2413.00.015.905.3925.8040.8990.967
P7170118.915531.10.15230.74072302.12593.62598.192895.732900.31214.67 < OK 23412.3812.3913.50.018.265.9325.9770.9890.996
P8180015650.00.15350.74192302.12600.47600.472902.582902.58215.01 < OK 23412.4012.4113.50.018.126611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 38
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 160064.008
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 15650
MRA(sWt[tid][20][10])= 769.446
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =9Columns
2. gCol[tid][2] =Column ODOD =812.8mm
3. gCol[tid][3] =Column thkthk =8.74mm
4. gCol[tid][4] =Tank HeightHtank =10825mm
5. gCol[tid][5] =Upper Column HeightUCHT =3380mm
6. gCol[tid][6] =Lower Column HeightLCHT =7445mm
7. gCol[tid][7] =Column P.C.DPCD =15260mm
8. gCol[tid][8] =Brace AngleBRang =35.0319deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.818deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA516-70t26.5 ~ 26.5SHT38160.064195.278000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt26.5, t11¡¿2853¡¿3380SHT98.5559.411000,000000,0002
3LOWER COLUMN (PIPE)null¨ª812.8¡¿8.74t ¡¿ 7445LPCS911.61211.612000,000000,0003
4BRACE ( PIPE, ¥è= 35.0319 deg.)null¨ª0¡¿0t ¡¿ 9092LPCS18000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA516-70(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA516-70PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL74180.231216.301000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. SN2388Rev. No.[AAA4] 
Design Code : Div. 1, Di = 12000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o12002.000497.8497.80.00-13.9313.50.7+0.50-0.4164-0.44980¥òeq = 92233720368547761 / 10
P110.0o10.0o11910.800497.80.00-13.9313.50.7+0.50-0.4164-0.44980¥òeq = 92233720368547762 / 10
P220.0o30.0o11198.000497.80.00-13.9313.50.7+0.50-0.4164-0.44980¥òeq = 92233720368547763 / 10
P320.0o50.0o9858.4882.64.3502.10.00-14.0613.50.7+0.50-0.4207-0.44980¥òeq = 92233720368547764 / 10
P440.0o90.0o6001.04740.023.2521.00.00-14.6213.50.7+0.50-0.4396-0.44980¥òeq = 92233720368547765 / 10
40.0o130.0o2143.68597.442.2540.00.00-15.1913.50.7+0.50-0.4586-0.44980¥òeq = 92233720368547767 / 10
P520.0o150.0o804.09937.048.7546.50.00-15.3913.50.7+0.50-0.4651-0.44980¥òeq = 92233720368547768 / 10
P620.0o170.0o91.210649.852.2550.00.00-15.4913.50.7+0.50-0.4686-0.44980¥òeq = 92233720368547769 / 10
P710.0o180.0o010741.052.7550.50.00-15.5113.50.7+0.50-0.4691-0.4498-0.4691-0.44980¥òeq = 922337203685477610 / 10
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.4978MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =-0.4691MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =-0.4498MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. SN2388Rev. No.[AAA4] 
Design Code : Div. 1, Di = 12000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o12000.000000.000.000.0013.5-0.4164-0.4498¥òeq = 1493.41 / 10
P110.0o10.0o11908.891.20.90.9-0.03-0.03-0.0313.5-0.4164-0.4498¥òeq = 1496.0872 / 10
P220.0o30.0o11196.2803.87.97.9-0.24-0.24-0.2413.5-0.4164-0.4498¥òeq = 1517.1953 / 10
P320.0o50.0o9856.72143.321.021.0-0.63-0.63-0.6313.5-0.4207-0.4498¥òeq = 1557.5574 / 10
P440.0o90.0o6000.06000.058.858.8-1.76-1.76-1.7613.5-0.4396-0.4498¥òeq = 1762.9255 / 10
40.0o130.0o2143.39856.796.796.7-2.90-2.90-2.9013.5-0.4586-0.4498¥òeq = 1784.3467 / 10
P520.0o150.0o803.811196.2109.8109.8-3.29-3.29-3.2913.5-0.4651-0.4498¥òeq = 1822.9118 / 10
P620.0o170.0o91.211908.8116.8116.8-3.50-3.50-3.5013.5-0.4686-0.4498¥òeq = 1843.7569 / 10
P710.0o180.0o012000.0117.7117.7-3.53-3.53-3.5313.5-0.4691-0.4498¥òeq = 1846.4410 / 10
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4978at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =-0.4691at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =-0.4498at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =00


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. SN2388Rev. No.[AAA4] 
Design Code : Div. 1, Di = 12000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o12002.00012000.00012.5013.5-0.4164-0.449854.01021 / 10
P110.0o10.0o11910.80011908.891.20.912.5013.5-0.4164-0.449854.01022 / 10
P220.0o30.0o11198.00011196.2803.87.912.5013.5-0.4164-0.449854.01023 / 10
P320.0o50.0o9858.4882.64.39856.72143.321.012.5013.5-0.4207-0.449854.01024 / 10
P440.0o90.0o6001.04740.023.26000.06000.058.812.5013.5-0.4396-0.449854.01025 / 10
40.0o130.0o2143.68597.442.22143.39856.796.712.5013.5-0.4586-0.449854.01027 / 10
P520.0o150.0o804.09937.048.7803.811196.2109.812.5013.5-0.4651-0.449854.01028 / 10
P620.0o170.0o91.210649.852.291.211908.8116.812.5013.5-0.4686-0.449854.01029 / 10
P710.0o180.0o010741.052.7012000.0117.712.5013.5-0.4691-0.449854.010210 / 10
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4978at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =-0.4691at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =-0.4498at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =00
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =44.1299SA553-TYPE1
Maximum. Allowable External PressureMAEP =54.01020.5508CS-1
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(0.5 atm = 50.6625 kPa) condition.
Harf Vacuum(0.5 atm = 50.6625 kPa) < MAEP(MinMAEP=54.0102 kPa)
¡Ü Shell MaterialMATL =SA553-TYPE1
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =-99.999 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = -99.999 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =-99.999 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-1 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 12.5 mm
Outside Radius of tank top headRo = 6013.5 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0002598
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-1)Factor B =25.98320 MPa
Design External Pressure, ¡¡Pe = 0.45 (kg/cm©÷)Pe =44.1299 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =54.0102 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. SN2388Rev. No.[AAA4] 
Design Code : Div. 1, Di = 12000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o0.00-13.90.000.0012.3013.50.7+0.50#130.013.52094.46283.231,3253,9751 / 10
P110.0o10.0o0.00-13.9-0.03-0.0312.3013.50.7+0.502 / 10
P220.0o30.0o0.00-13.9-0.24-0.2412.3013.50.7+0.503 / 10
P320.0o50.0o0.00-14.1-0.63-0.6312.3013.50.7+0.50#220.013.52094.46700.141,1474,5884 / 10
P440.0o90.0o0.00-14.6-1.76-1.7612.3013.50.7+0.50#380.013.52692.88477.6142,20130,8175 / 10
40.0o130.0o0.00-15.2-2.90-2.9012.3013.50.7+0.507 / 10
P520.0o150.0o0.00-15.4-3.29-3.2912.3013.50.7+0.50#420.013.52094.46500.141,1474,5888 / 10
P620.0o170.0o0.00-15.5-3.50-3.5012.3013.50.7+0.50#530.013.52094.46283.231,3253,9759 / 10
P710.0o180.0o0.00-15.5-3.53-3.5312.3013.50.7+0.5010 / 10
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [8 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 7. ¸»·¹À̽þÆRev. No.[AAA4] 
Design Code : Div. 1, Di = 15650 mm, CA = 3 mm, SG = 0.6215, Pg= 6.0 kg/cm©÷(=588.399 kPa), Pe= 1.033227 kg/cm©÷(=101.325 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=965 kPa
Material : SA516-70, EXTERNAL CHART NO. [CS-2], DTEMP = 68 ¡É, Sd = 138 MPa, St = 234 MPa, Samb = 138 MPa, LSR = Samb/Sd = 1.0, Ft = 485 MPa, Fy = 260 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o19.6919.716.1420.3125.4226.50.7+0.38#130.026.52731.48194.334,42313,2701 / 11
P110.0o10.0o19.6919.716.1620.3325.4226.50.7+0.382 / 11
P220.0o30.0o19.6919.716.3120.4825.4226.50.7+0.383 / 11
P320.0o50.0o19.9019.916.6020.7725.4226.50.7+0.38#220.026.52731.48677.243,83015,3194 / 11
P416.0o66.0o20.2320.216.9021.0725.4226.50.7+0.38#316.026.52495.38194.363,14918,8925 / 11
P524.0o90.0o20.9920.817.4221.5925.42TD90USED0.7+0.38#464.026.52731.48840.6184,66683,9966 / 11
40.0o130.0o21.6421.618.2522.4225.4226.50.7+0.388 / 11
P620.0o150.0o21.9422.018.5322.7025.4226.50.7+0.38#520.026.52731.48477.243,83015,3199 / 11
P720.0o170.0o22.1022.118.6922.8625.4226.50.7+0.38#630.026.52731.48194.334,42313,27010 / 11
P810.0o180.0o22.1222.118.7122.8825.4226.50.7+0.3811 / 11
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 12.3 mm; Pe :44.13 kPa ¡Â Pa = 44.16 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0002349; Factor_B = 23.494 MPa


S-Tank Engineering
Spherical Tank Calculation [9 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=12000 (cm), Sd=-99.999 MPa, Pg=0.4978 (MPa), HT_UPPCOL = 26800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=124.971 (N-mm), N¥õ=14.503 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 12000mm1200.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 6001mm600.1cm
4¡¡L = Design Liquid levelL = 10740mm1074.0cm
5¡¡CA = Corrosion Allowance CA = 1.0mm0.1cm
6¡¡Wt = Total Weight at Operating ConditionWt = 3,812,394N388756.0Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = -99.999MPaS = -99.999MPa-1019.706Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.498MPa5.076Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.50.5
10¡¡¥ã = Liquid Density¥ã = 4.903325E-6N/mm©ø500.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 609.6mm60.96cm
12¡¡N = Number of Support ColumnN = 7.0columns7columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.53002degree0.46304radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 37.82679degree0.6602radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99153650.9915365
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.19236201.1923620
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44666670.4466667
20¡¡C5 = 22 / ¥õC5 = 0.82924920.8292492
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44666670.4466667
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 1493.649N-mm15.231Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 124.971N-mm1.274Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 14.503N-mm0.148Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 1705.36N/mm1738.983Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 1400.35N/mm1427.96Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = -15.51mm-1.551cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = -14.81mm-1.481cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 9,223,372,036,854,776MPa9.223372036854776E15Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 243,263,010N-mm2480.592¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 84,293,326N-mm859.553¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 122,869,516N-mm1252.92¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 37,978,435N-mm387.272¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 114.562N/mm116.821Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 140,695,994N-mm1434.7¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 76,545,566N-mm780.548¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = -1.719362899E7mm©ø-17.194¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 1,676,002,686mm©ø1676.003¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.9337E-52.9337E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 8.184775E-38.184775E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1364.694mm136.469cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 27.821N/mm28.37Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 12,999,821N-mm132.561¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 6,566,069N-mm66955.272Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 467,275mm©ø4672.746cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 99,132,860mm©ø99.133¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 212.151mm21.215cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 419.751mm41.975cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 107.801N/mm109.926Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 76.551N/mm78.06Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 420,116N42839.9Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 9735.472N992.7Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 5360.893mm536.089cm

piDeg=[26.53002101801117] piRad=[0.46303621738759276] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=12000 (cm), Sd=-99.999 MPa, Pg=0.4978 (MPa), HT_UPPCOL = 26800.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
012002.0000.49781493.651493.651493.659223372036854776.00 > NG -99.999-13.94-13.931.00.019223464271497592.000000
P11011910.8000.49781493.651493.651493.659223372036854776.00 > NG -99.999-13.94-13.931.00.019223464271497592.000000
P23011198.0000.49781493.651493.651493.659223372036854776.00 > NG -99.999-13.94-13.931.00.019223464271497592.000000
P3509858.4882.60.00430.50211493.6523.722.251517.371495.909223372036854776.00 > NG -99.999-14.07-14.061.00.019223464271497592.000.8060.0770.1340.013
P4906001.04740.00.02320.5211493.65124.9714.50114.5627.82107.8076.551705.361400.359223372036854776.00 > NG -99.999-14.81-14.631.00.189223464271497592.004.2460.4930.7080.082Column Attached Equator Plate
1302143.68597.40.04220.541493.65109.58143.401603.231637.059223372036854776.00 > NG -99.999-15.20-15.191.00.019223464271497592.003.7234.8730.6210.812
P5150804.09937.00.04870.54651493.65140.14152.251633.791645.909223372036854776.00 > NG -99.999-15.40-15.391.00.019223464271497592.004.7625.1730.7940.862
P617091.210649.80.05220.551493.65156.01157.361649.661651.019223372036854776.00 > NG -99.999-15.50-15.491.00.019223464271497592.005.3015.3470.8840.891
P7180010741.00.05270.55051493.65158.03158.031651.681651.689223372036854776.00 > NG -99.999-15.52-15.511.00.019223464271497592.005.375.370.8950.895


S-Tank Engineering
Spherical Tank Calculation [9 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=12000 (cm), Syt=-99.999 MPa, MAWP=0.64714 (MPa), HT_UPPCOL = 26900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=294.2 (N-mm), N¥õ=58.84 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 12000mm1200.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 6000mm600.0cm
4¡¡L = Hydrostatic-test Water LevelL = 12000mm1200.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 8,124,091N828426.7Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = -99.999MPaS = -99.999MPa-1019.706Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.498MPa5.076Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 609.6mm60.96cm
12¡¡N = Number of Support ColumnN = 7.0columns7columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.6368degree0.4649radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99131820.9913182
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.19681111.1968111
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44833330.4483333
20¡¡C5 = 22 / ¥õC5 = 0.82592500.8259250
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44833330.4483333
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 1493.4N-mm15.228Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 294.2N-mm3.0Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 58.84N-mm0.6Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 1971.25N/mm2010.116Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 1323.4N/mm1349.492Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = -18.45mm-1.845cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = -17.63mm-1.763cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 1762.925MPa17976.832Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 518,299,376N-mm5285.183¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 178,925,924N-mm1824.537¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 261,787,411N-mm2669.489¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 80,678,903N-mm822.696¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 242.219N/mm246.995Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 299,659,095N-mm3055.672¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 162,957,230N-mm1661.701¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = -2.659853272E7mm©ø-26.599¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 1,694,586,418mm©ø1694.586¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.993E-52.993E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 8.283287E-38.283287E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1369.76mm136.976cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 58.573N/mm59.728Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 27,688,011N-mm282.339¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 13,984,915N-mm142.606¡¿103Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 472,706mm©ø4727.059cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 101,068,420mm©ø101.068¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 213.808mm21.381cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 422.993mm42.299cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 228.838N/mm233.35Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 162.728N/mm165.936Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 896,390N91406.4Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 20913.782N2132.6Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 5380.0mm538.0cm

piDeg=[26.636802529678082] piRad=[0.4648999063464371] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=12000 (cm), Syt=-99.999 MPa, MAWP=0.64714 (MPa), HT_UPPCOL = 26900.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
012000.0000.49781493.41493.401493.401493.40 > NG -99.999-14.93-14.931.01593.410000
P11011908.891.20.00090.49871493.44.031.341497.431494.741496.09 > NG -99.999-14.96-14.951.00.011596.100.0680.0230.0110.004
P23011196.2803.80.00790.50571493.435.7611.541529.161504.941517.20 > NG -99.999-15.17-15.161.00.011617.210.6080.1960.1010.033
P3509856.72143.30.02100.51881493.496.8729.241590.271522.641557.56 > NG -99.999-15.58-15.561.00.021657.571.6460.4970.2740.083
P4906000.06000.00.05880.55661493.4294.2058.84242.2258.57228.84162.731971.251323.401762.92 > NG -99.999-17.63-16.691.00.941862.94510.8330.167Column Attached Equator Plate
1302143.39856.70.09670.59451493.4256.17323.801749.571817.201784.35 > NG -99.999-17.84-17.821.00.021884.364.3545.5030.7260.917
P5150803.811196.20.10980.60761493.4317.28341.501810.681834.901822.91 > NG -99.999-18.23-18.221.00.011922.935.3925.8040.8990.967
P617091.211908.80.11680.61461493.4349.01351.701842.411845.101843.76 > NG -99.999-18.44-18.431.00.011943.775.9325.9770.9890.996
P7180012000.00.11770.61551493.4353.04353.041846.441846.441846.44 > NG -99.999-18.46-18.451.00.011946.466611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 28
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 47941.92
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 12000
MRA(sWt[tid][20][10])= 452.389
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =7Columns
2. gCol[tid][2] =Column ODOD =609.6mm
3. gCol[tid][3] =Column thkthk =6.35mm
4. gCol[tid][4] =Tank HeightHtank =9000mm
5. gCol[tid][5] =Upper Column HeightUCHT =2690mm
6. gCol[tid][6] =Lower Column HeightLCHT =6310mm
7. gCol[tid][7] =Column P.C.DPCD =11670mm
8. gCol[tid][8] =Brace AngleBRang =38.7451deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =13.468deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA553-TYPE1t13.5 ~ 13.5SHT2847.94258.489000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt13.5, t8¡¿2215¡¿2690SHT73.0103.311000,000000,0002
3LOWER COLUMN (PIPE)null¨ª609.6¡¿6.35t ¡¿ 6310LPCS74.1724.172000,000000,0003
4BRACE ( PIPE, ¥è= 38.7451 deg.)null¨ª0¡¿0t ¡¿ 8090LPCS14000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA553-TYPE1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA553-TYPE1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL5655.12465.972000,000000,00012
]CalcRpt[i][0]=[null


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. SN2345Rev. No.[AAA4] 
Design Code : Div. 1, Di = 9000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
1. Design (Operating) Condition
SegmentEach
Angle
Angle
¥á
HHsPsPgP
=Ps+Pg
tSheartdReqtUsedForming
Margin
0.7+¥á
Pmax
MAWP
Pmax
MAP
Min.MAWP
ã±â
MinMAP
ã±â
LSR=Sa/S
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPaMPaMPaLSR
00o9002.000497.8497.80.00-10.2011.00.7+0.30-0.4441-0.48860¥òeq = 92233720368547761 / 8
P115.0o15.0o8848.600497.80.00-10.2011.00.7+0.30-0.4441-0.48860¥òeq = 92233720368547762 / 8
P230.0o45.0o7683.7387.31.9499.70.00-10.2411.00.7+0.30-0.4460-0.48860¥òeq = 92233720368547763 / 8
P345.0o90.0o4501.03570.017.5515.30.00-10.5911.00.7+0.30-0.4616-0.48860¥òeq = 92233720368547764 / 8
45.0o135.0o1318.36752.733.1530.90.00-10.9411.00.7+0.30-0.4772-0.48860¥òeq = 92233720368547766 / 8
P430.0o165.0o153.47917.638.8536.60.00-11.0711.00.7+0.30-0.4829-0.48860¥òeq = 92233720368547767 / 8
P515.0o180.0o08071.039.6537.40.00-11.0911.00.7+0.30-0.4837-0.4886-0.4837-0.48860¥òeq = 92233720368547768 / 8
A) Operating :
¡¡¡¡tReq =  
P¡¤R
  2¡¤S¡¤E £­ 0.2¡¤P  
  £« CA
B) Test :
¡¡¡¡tReq =  
P¡¤Rc
  2¡¤St¡¤E £­ 0.2¡¤Pt  
  £« CA
Test
Case
escriptionFormulasymbolMin
Value
UnitHydrostatic
Test
Condition
Selected
1Max. Allowable Working PressueMAWP = (D.P) = PgMAWP =0.4978MPaAt Site (Hot & Corroded)Selected
2Max. Allowable Working PressueMAWP = CalcMAWP(Each Shell)MAWP =-0.4837MPaAt Site (Hot & Corroded)N/A
3Max. Allowable PressueMAP = CalcMAP(Each Shell)MAP =-0.4886MPaAt Shop ( New & Cold )N/A


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. SN2345Rev. No.[AAA4] 
Design Code : Div. 1, Di = 9000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
2. Hydrostatic-Test Condition (at Site) MAWP : Hot-Corroded
SegmentEach
Angle
Angle
¥á
HHsPsPset
(Test
Gage
Pressure)
P
=Ps+Pset
1)ttReq
Pg
(Basis)
2)ttReq
MAWP
3)ttReq
MAP
°øÀå¼ö¾Ð
½Ã¿¡¸¸»ç¿ë
tUsedPmax
MAWP
Pmax
MAP
No.deg.deg.mmmmH2OkPakPakPammmmmmmmMPaMPa
00o9000.000000.000.000.0011.0-0.4441-0.4886¥òeq = 1120.051 / 8
P115.0o15.0o8846.7153.31.51.5-0.03-0.03-0.0311.0-0.4441-0.4886¥òeq = 1123.4342 / 8
P230.0o45.0o7682.01318.012.912.9-0.29-0.29-0.2911.0-0.4460-0.4886¥òeq = 1149.4383 / 8
P345.0o90.0o4500.04500.044.144.1-0.99-0.99-0.9911.0-0.4616-0.4886¥òeq = 1348.1234 / 8
45.0o135.0o1318.07682.075.375.3-1.69-1.69-1.6911.0-0.4772-0.4886¥òeq = 1289.836 / 8
P430.0o165.0o153.38846.786.886.8-1.95-1.95-1.9511.0-0.4829-0.4886¥òeq = 1315.2537 / 8
P515.0o180.0o09000.088.388.3-1.99-1.99-1.9911.0-0.4837-0.4886¥òeq = 1318.638 / 8
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4978at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =-0.4837at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =-0.4886at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =00


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. SN2345Rev. No.[AAA4] 
Design Code : Div. 1, Di = 9000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
3. MAWP/MAP Calculation
SegmentEach
Angle
Angle
¥á
H
Liquid
Level
HdPsHt
Test
Water
Level
HtPsttc =
tUsed
- CA
tUsedPmax
MAWP
Pmax
MAP
MEP
No.deg.deg.mmmmH2OkPammH2OkPammmmMPaMPakPa
00o9002.0009000.00010.0011.0-0.4441-0.488661.42771 / 8
P115.0o15.0o8848.6008846.7153.31.510.0011.0-0.4441-0.488661.42772 / 8
P230.0o45.0o7683.7387.31.97682.01318.012.910.0011.0-0.4460-0.488661.42773 / 8
P345.0o90.0o4501.03570.017.54500.04500.044.110.0011.0-0.4616-0.488661.42774 / 8
45.0o135.0o1318.36752.733.11318.07682.075.310.0011.0-0.4772-0.488661.42776 / 8
P430.0o165.0o153.47917.638.8153.38846.786.810.0011.0-0.4829-0.488661.42777 / 8
P515.0o180.0o08071.039.609000.088.310.0011.0-0.4837-0.488661.42778 / 8
No.MAWP and Hydrostatic-test gauge setting pressuresymbolValue
(MPa)
Test Gage
Pressure
(kg/cm2)
Hydro. Test
Location
CASE 1Design Internal Pressue (Pg = MAWP, BASIS)MAWP = Pg =0.4978at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 2(Hot & Corroded) At Site : Max. Allowable Working PressueMAWP =-0.4837at Site
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MWAP¡¿LSRPset(MAWP) =00
CASE 3( New & Cold ) At Shop : Max. Allowable PressueMAP =-0.4886at Shop
Hydrostatic-Test Gauge Setting Pressure, Pset = 1.3¡¿MAP¡¿LSRPset(MAP) =00
No.MAEP and performance in vacuumsymbolValue
kPa
Value
kg/cm2
Material
Chart No.
1Design External PressurePe =44.1299SA553-TYPE1
Maximum. Allowable External PressureMAEP =61.42770.6264CS-1
Pe < MAEP, OKPe < MAEPOK
This tank is safe in full vacuum(0.5 atm = 50.6625 kPa) condition.
Harf Vacuum(0.5 atm = 50.6625 kPa) < MAEP(MinMAEP=61.4277 kPa)
¡Ü Shell MaterialMATL =SA553-TYPE1
- Modulus of Elasticity [SEC. II PART 'D' Table TM-1]Ey =200133 MPa
- Minimum Yield Strength [SEC. II PART 'D' Table 1A]Sy =-99.999 MPa
- Allowable stress at Hydrostatic-test Conditions, Syt = 0.9 ¡¿ SySyt = -99.999 MPa
- Allowable stress at Test temperature (-12¡É~30¡É) [Table 1A] Samb =0 MPa
- Allowable stress at Design temperature (60.0 ¡É) [Table 1A] S =-99.999 MPa
- Lowest Stress Ratio, LSR = Samb / Sd LSR = 0
  o Chart For Shell Thk. Under External Pressure (FACTOR A, B CURVE) CS-1 [see Bellow Curve]
Initial thickness for Design External Pressure (after corroded)tc = 10.0 mm
Outside Radius of tank top headRo = 4511.0 mm
Factor A = 0.125 / [Ro / tc]Factor A =0.0002771
Factor B : (ASME Sec. II, Part D SUBPART 3 - FIG.CS-1)Factor B =27.71004 MPa
Design External Pressure, ¡¡Pe = 0.45 (kg/cm©÷)Pe =44.1299 kPa
Max. Allowable External Pressure, MAEP = FACTOR B ¡¿ tc/Ro ¡¿1000MAEP =61.4277 kPa
Check : Pe < MAEP O.K


S-Tank Engineering
AAA Spherical Tank Calculation [10 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 9. SN2345Rev. No.[AAA4] 
Design Code : Div. 1, Di = 9000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm2(=497.8 kPa), Pe= 0.45 kg/cm2(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o0.00-10.20.000.0010.0011.00.7+0.30#145.011.02356.27068.631,3664,0991 / 8
P115.0o15.0o0.00-10.2-0.03-0.0310.0011.00.7+0.302 / 8
P230.0o45.0o0.00-10.2-0.29-0.2910.0011.00.7+0.303 / 8
P345.0o90.0o0.00-10.6-0.99-0.9910.0011.00.7+0.30#290.011.02827.47168.6101,55415,5384 / 8
45.0o135.0o0.00-10.9-1.69-1.6910.0011.00.7+0.306 / 8
P430.0o165.0o0.00-11.1-1.95-1.9510.0011.00.7+0.30#345.011.02356.27068.631,3664,0997 / 8
P515.0o180.0o0.00-11.1-1.99-1.9910.0011.00.7+0.308 / 8
], CalcRpt[i][1]=[


S-Tank Engineering
AAA Spherical Tank Calculation [9 / 10]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : 8. SN2388Rev. No.[AAA4] 
Design Code : Div. 1, Di = 12000 mm, CA = 1 mm, SG = 0.5, Pg= 5.076147 kg/cm©÷(=497.8 kPa), Pe= 0.45 kg/cm©÷(=44.13 kPa), ¼ö¾ÐÅ×½ºÆ®¾Ð·Â GsetMAWP=0 kPa
Material : SA553-TYPE1, EXTERNAL CHART NO. [CS-1], DTEMP = 40 ¡É, Sd = -99.999 MPa, St = -99.999 MPa, Samb = 0 MPa, LSR = Samb/Sd = 0, Ft = -99.999 MPa, Fy = -99.999 MPa
4. Summary of Shell Thickness
SegmentEach
Angle
Angle
¥á
1.tdReq
¥òeq
2.tdReq
ASME
CODE
3.ttReq
MAWP
Site
4.ttReq
MAP
Shop
5.teReq
External
Pressure
tUsed
°áÁ¤
µÎ²²
Forming
Margin
+0.7 mm
PNoSEG.
Angle
tUsed
thick.
WidthHeightQtyUnit
WT
Net
WT
No.deg.deg.mmmmmmmmmmmmmm#deg.mmmmmmSHTkg/shtkg
00o0-13.90012.3013.50.7+0.50#130.013.52094.46283.231,3253,9751 / 10
P110.0o10.0o0-13.9-0.03-0.0312.3013.50.7+0.502 / 10
P220.0o30.0o0-13.9-0.24-0.2412.3013.50.7+0.503 / 10
P320.0o50.0o0-14.1-0.63-0.6312.3013.50.7+0.50#220.013.52094.46700.141,1474,5884 / 10
P440.0o90.0o0-14.6-1.76-1.7612.30TD90USED0.7+0.50#380.013.52692.88477.6142,20130,8175 / 10
40.0o130.0o0-15.2-2.90-2.9012.3013.50.7+0.507 / 10
P520.0o150.0o0-15.4-3.29-3.2912.3013.50.7+0.50#420.013.52094.46500.141,1474,5888 / 10
P620.0o170.0o0-15.5-3.50-3.5012.3013.50.7+0.50#530.013.52094.46283.231,3253,9759 / 10
P710.0o180.0o0-15.5-3.53-3.5312.3013.50.7+0.5010 / 10
Spherical tank, / External Pressure calc Result !!
DivNo = 1, teReq = 10 mm; Pe :44.13 kPa ¡Â Pa = 49.78 kPa = Factor_B / (Ro/tc)*1000 ; Factor_A=0.0625*tc/Rc = 0.0002494; Factor_B = 24.945 MPa


S-Tank Engineering
Spherical Tank Calculation [10 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition
¡¡¡¡D=9000 (cm), Sd=-99.999 MPa, Pg=0.4978 (MPa), HT_UPPCOL = 20100.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=70.528 (N-mm), N¥õ=8.261 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 9000mm900.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 4501mm450.1cm
4¡¡L = Design Liquid levelL = 8070mm807.0cm
5¡¡CA = Corrosion Allowance CA = 1.0mm0.1cm
6¡¡Wt = Total Weight at Operating ConditionWt = 1,629,691N166182.3Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = -99.999MPaS = -99.999MPa-1019.706Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.498MPa5.076Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 0.50.5
10¡¡¥ã = Liquid Density¥ã = 4.903325E-6N/mm©ø500.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 406.4mm40.64cm
12¡¡N = Number of Support ColumnN = 5.0columns5columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.53002degree0.46304radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 37.51847degree0.65482radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99153650.9915365
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.19236201.1923620
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44666670.4466667
20¡¡C5 = 22 / ¥õC5 = 0.82924920.8292492
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44666670.4466667
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 1120.299N-mm11.424Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 70.528N-mm0.719Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 8.261N-mm0.084Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 1299.37N/mm1324.989Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 1042.54N/mm1063.095Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = -11.09mm-1.109cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = -10.97mm-1.097cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 9,223,372,036,854,776MPa9.223372036854776E15Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 154,930,744N-mm1579.854¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 49,720,581N-mm507.009¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 79,026,744N-mm805.849¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 20,476,764N-mm208.805¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 136.54N/mm139.232Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 94,334,555N-mm961.945¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 53,942,186N-mm550.057¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = -6563475.87mm©ø-6.563¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 707,181,464mm©ø707.181¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 2.9337E-52.9337E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 8.184775E-38.184775E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1023.577mm102.358cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 27.995N/mm28.547Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 7,359,059N-mm75041.515Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 3,753,693N-mm38277.016Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 262,871mm©ø2628.712cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 41,828,645mm©ø41.829¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 159.122mm15.912cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 314.831mm31.483cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 86.015N/mm87.711Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 63.669N/mm64.924Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 259,706N26482.7Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 3699.031N377.2Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 4020.893mm402.089cm

piDeg=[26.53002101801117] piRad=[0.46303621738759276] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.1 At Design(Operating) Condition Equator Plate(A Point at 90 deg) Stress :
D=9000 (cm), Sd=-99.999 MPa, Pg=0.4978 (MPa), HT_UPPCOL = 20100.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
09002.0000.49781120.31120.301120.309223372036854776.00 > NG -99.999-10.20-10.201.09223464271497592.000000
P1158848.6000.49781120.31120.301120.309223372036854776.00 > NG -99.999-10.20-10.201.09223464271497592.000000
P2457683.7387.30.00190.49971120.38.010.541128.311120.849223372036854776.00 > NG -99.999-10.25-10.241.00.019223464271497592.000.4840.0330.0810.005
P3904501.03570.00.01750.51531120.370.538.26136.5427.9986.0163.671299.371042.549223372036854776.00 > NG -99.999-10.97-10.591.00.389223464271497592.004.260.4990.710.083Column Attached Equator Plate
1351318.36752.70.03310.53091120.366.8382.211187.121202.509223372036854776.00 > NG -99.999-10.95-10.941.00.019223464271497592.004.0364.9650.6730.828
P4165153.47917.60.03880.53661120.386.5288.221206.821208.529223372036854776.00 > NG -99.999-11.08-11.071.00.019223464271497592.005.2265.3290.8710.888
P518008071.00.03960.53741120.389.0689.061209.361209.369223372036854776.00 > NG -99.999-11.09-11.091.09223464271497592.005.3795.3790.8970.897


S-Tank Engineering
Spherical Tank Calculation [10 / ??? ]   Page   [$CP] / [$TP]
[AAA1] [AAA2] 
Doc. No. : AAA3Rev. No.[AAA4] 
SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition
¡¡¡¡D=9000 (cm), Syt=-99.999 MPa, MAWP=0.64714 (MPa), HT_UPPCOL = 20200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)
¡¡¡¡¡¡¡¡Membrane Stres(By Roark Formula) N¥è=165.487 (N-mm), N¥õ=33.097 (N-mm)
NoDescriptionSymbolValueSI
Unit
ValueMetric
Unit
1 Design Data :
2¡¡D = Tank In-DiameterD = 9000mm900.0cm
3¡¡R = Inside Radius in Corroded ConditionR = 4500mm450.0cm
4¡¡L = Hydrostatic-test Water LevelL = 9000mm900.0cm
5¡¡CA = Corrosion Allowance CA = 0.0 mm0cm
6¡¡Wt = Total Weight at Operating ConditionWt = 3,449,387N351739.5Kg
7¡¡S = Allowable Stress for the Design Condition SA553-TYPE1, Sd = -99.999MPaS = -99.999MPa-1019.706Kg/cm©÷
8¡¡P = Design internal GAS PressureP = 0.498MPa5.076Kg/cm©÷
9¡¡SG = Design Specific GravitySG = 1.01
10¡¡¥ã = Liquid Density¥ã = 9.80665E-6N/mm©ø1000.0Kg/m©ø
11¡¡d = Outsdie diameter of Columnd = 406.4mm40.64cm
12¡¡N = Number of Support ColumnN = 5.0columns5columns
13¡¡¥Ä = Angle of equator line to column top point¥Ä = 0.0 degree0radians
14¡¡¥õ = Angle of upper column from top to base¥õ = 26.67242degree0.46552radians
15¡¡¥â = Angle of Liquid Level, ¥â=Acos[(L+CA-R)/R]¥â = 0.0 degree0radians
16¡¡C1 = cos(¥Ä + ¥õ/2) / cos(11)C1 = 0.99124530.9912453
17¡¡C2 = FactorC2 = 1.00000001.0000000
18¡¡C3 = { sin(¥Ä+¥õ ) - sin(¥Ä) } / sin(22)C3 = 1.19829411.1982941
19¡¡C4 = sin(¥Ä+¥õ ) + sin(¥Ä)C4 = 0.44888890.4488889
20¡¡C5 = 22 / ¥õC5 = 0.82482210.8248221
21¡¡C6 = sin(¥Ä+¥õ) + sin(¥Ä)C6 = 0.44888890.4488889
22 Calculation Result :
23¡¡PM = P¡¿R/2 PM = 1120.05N-mm11.421Kg-cm
24¡¡N¥è = ¥ãR©÷/6 ¡¿ [6¡¿cos¥â-6¡¿cos¥è-3¡¿cos¥â¡¿cos©÷¥è+4¡¿cos©ø¥è-cos©ø¥â)/(1-cos©÷¥è)]N¥è = 165.487N-mm1.687Kg-cm
25¡¡N¥õ = ¥ãR©÷/6 ¡¿ [( cos©ø¥â - 3¡¿cos©÷¥è¡¿cos¥â + 2¡¿cos©ø¥è) / ( 1-cos©÷¥è)]N¥õ = 33.097N-mm0.337Kg-cm
26¡¡¥ÒN¥è = Max. Latitude Membrane Force
¡¡¡¡¥ÒN¥è = N¥è + PM + VB - HB
¥ÒN¥è = 1513.0N/mm1542.831Kg/cm
27¡¡¥ÒN¥õ = Max. Meridional Membrane Force
¡¡¡¡¥ÒN¥õ = N¥õ + PM - IP
¥ÒN¥õ = 972.02N/mm991.185Kg/cm
28¡¡ Equator plate thk by Internal Pressure (by ASME Rules) tASME = -13.18mm-1.318cm
29 t(Point A) = Min. required thickness at point at A
¡¡tReq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷ £­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
S
£« CA
tReq = -13.48mm-1.348cm
30 Effective equivalent stress(Von-Mises), ¥òeq < S then OK
¡¡¥òeq =
¡î[¥ÒN¥è©÷£« ¥ÒN¥õ©÷£­ ( ¥ÒN¥è x ¥ÒN¥õ ) £« 3¡¤¥óxy©÷]
(tu £­ CA)
¥òeq = 1348.123MPa13747.029Kg/cm©÷
31 Calculation Result :
32¡¡Mo = Wt R cos(11) / N x { N / (2¥ð)- 1 / (2 x Tan(¥ð/N) ) }Mo = 327,851,858N-mm3343.159¡¿103Kg-cm
33¡¡¥ÄMo = 3 Wt R / 4¥ð ¡¿ [ 0.2616 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 0.88196.4 ¡¿ C5/N - 1 ) / C5 ]
¥ÄMo = 104,823,050N-mm1068.898¡¿103Kg-cm
34¡¡Mc = Wt R cos(11) / N x { 1 / 2 ¡¿ sin(¥ð/N)) - N / (2¥ð) ) }Mc = 167,229,978N-mm1705.271¡¿103Kg-cm
35¡¡¥ÄMc = 3 Wt R / 4¥ð ¡¿ [-0.5232 ¡¿ ( 1+0.88196.4 ¡¿ C5/N) / N
¡¡¡¡+ 0.02804 ¡¿ ( 1 - 0.88196.4 ¡¿ C5/N ) / C5 ]
¥ÄMc = 43,250,235N-mm441.03¡¿103Kg-cm
36VB : Membrance Force resulting from
longitudinal bending moment
¡¡VB = Mvs / Za ¡¿ t
VB = 285.771N/mm291.405Kg/cm
37¡¡Mvs = Mo ¡¿ C1 - ¥ÄMo ¡¿ C3Mvs = 199,372,753N-mm2033.036¡¿103Kg-cm
38¡¡Mvm = Mc ¡¿ C1 - ¥ÄMc ¡¿ C3Mvm = 113,939,420N-mm1161.859¡¿103Kg-cm
39¡¡Za = IH / LA ¡¿ tZa = -1.046498447E7mm©ø-10.465¡¿103cm©ø
40¡¡IH = R©ø ¡¿ [ VI x sin( ¥õ/2)©÷ + HI x cos(¥õ/2)©÷ ]IH = 717,649,510mm©ø717.65¡¿103cm©ø
41¡¡VI = ¥õ / 2 + ( sin¥õ/2 ¡¿ cos¥õ/2 ) - [ 4 x sin(¥Ä/2)©÷ / ¥õ ]VI = 3.013E-53.013E-5
42¡¡HI = ¥õ / 2 - ( sin¥õ/2 ¡¿ cos¥õ/2 )HI = 8.316317E-38.316317E-3
43¡¡LA = { R¡¿sin¥õ/2¡¿sin¥õ/2 } / ( ¥õ/2 ) )LA = 1028.644mm102.864cm
44HB : Membrance Force resulting from
latitude bending moment
¡¡HB = Mks / Zv
HB = 58.308N/mm59.458Kg/cm
45¡¡Mks = Mo x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mks = 15,565,452N-mm158.723¡¿103Kg-cm
46¡¡Mkm = Mc x ( 18 / 4¥ð ) ¡¿ ( d / R ) ¡¿ C1 ¡¿ C5 ¡¿ C6Mkm = 7,939,593N-mm80961.314Kg-cm
47¡¡Zv = IV / Max(KA, KB)Zv = 266,951mm©ø2669.507cm©÷
48¡¡IV = R©ø ¡¿ [ VI ¡¿ cos( ¥õ/2)©÷ + HI ¡¿ sin( ¥õ/2)©÷ ]IV = 42,920,507mm©ø42.921¡¿103cm©ø
49¡¡KA = R ¡¿ [ 1 - cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) ]KA = 160.781mm16.078cm
50¡¡KB = R ¡¿ [ cos¥õ/2 ¡¿ sin¥õ/2 / (¥õ/2) - cos¥õ ]KB = 318.075mm31.807cm
51IP : Membrance Force resulting from shear stress
¡¡IP = 9¡¿Wt / ( 2¥ðN¡¤R ) ¡¿ C5
IP = 181.127N/mm184.698Kg/cm
52¥óxy : Shear Force, ¥óxy = ( S' - P' ) / D'¡¡¥óxy = 134.301N/mm136.949Kg/cm
53¡¡S' = Wt/N¡¿[ 1 - ( 18/(4¥ð)¡¤d/R¡¤C5¡¤{cos(¥Ä) + cos(¥õ)} ) ]S' = 550,491N56134.4Kg
54¡¡P' = d/R¡¿Wt¡¿[ 3/(4¥ð)¡¿{cos(¥Ä) - cos(¥Ä+¥õ) } ]P' = 7913.831N807.0Kg
55¡¡D' = 2¡¿R¡¿[sin(¥Ä+¥õ) - sin¥Ä](¿ëÁ¢Á¢Ã˺Π±æÀÌ)D' = 4040.0mm404.0cm

piDeg=[26.6724185367116] piRad=[0.4655215229355854] SPH_IHI_EQPL_SHEAR.jsp SPH_IHI_EQPL_SHEAR()
1.2 At Hydrostatic-Test Condition Equator Plate(A Point at 90 deg) Stress :
D=9000 (cm), Syt=-99.999 MPa, MAWP=0.64714 (MPa), HT_UPPCOL = 20200.0 (mm), deg_22 = 22.0 (deg), cos11 = 0.9816272 (rad)

°¢µµ DataÃÖ´ë º¯Çü¿¡³ÊÁö Theory À̷п¡ ÀÇÇÑ °ËÁõ
by, Effective equivalent Stress(Von-Mises)
ASME DESIN RULE ¿¡ ÀÇÇÑ µÎ²² ¿Í
Ãִ뺯Çü¿¡³ÊÁö Theory(Von-Mises Stress) ¿¡ ÀÇÇÑ
µÎ²² °è»êÀÇ Æò°¡
N¥è, N¥õ °è»ê»ó¼ö
Coeif.
Segment
Angle
HmmHd
Liquid
Depth
Static
Head
Ps
Total
Pressure
Pt=Pg+Ps
PM =
P*R/2
N¥èN¥õVBHBIP¥óxy¥ÒN¥è¥ÒN¥õ¥òeqÆò°¡SdA)Shear
tReq
B)ASME
tReq
C)tu=
Max(A,B)
A - B
µÎ²²Â÷ÀÌ
Design
Margin
(%)
N¥è
coef.
N¥õ
coef.
N¥è
coef.
/ 6
N¥õ
coef.
/ 6
Nodeg.mmmmMPaMPaN/mmN/mmN/mmN/mmMPa< OK!MPammmmmmmm%
09000.0000.49781120.051120.051120.051120.05 > NG -99.999-11.20-11.201.01220.060000
P1158846.7153.30.00150.49931120.055.081.681125.131121.731123.43 > NG -99.999-11.23-11.231.01223.450.1540.0510.0260.008
P2457682.01318.00.01290.51071120.0544.4513.711164.501133.761149.44 > NG -99.999-11.49-11.491.01249.451.3430.4140.2240.069
P3904500.04500.00.04410.54191120.05165.4933.10285.7758.31181.13134.301513.00972.021348.12 > NG -99.999-13.48-12.191.01.291448.14510.8330.167Column Attached Equator Plate
1351318.07682.00.07530.57311120.05154.13184.881274.181304.931289.83 > NG -99.999-12.90-12.891.00.011389.844.6575.5860.7760.931
P4165153.38846.70.08680.58461120.05193.50196.901313.551316.951315.25 > NG -99.999-13.15-13.141.00.011415.275.8465.9490.9740.992
P518009000.00.08830.58611120.05198.58198.581318.631318.631318.63 > NG -99.999-13.19-13.181.00.011418.646611

], CalcRpt[i][2]=[SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT()

¡Ü WEIGHT SUMMARY SPH_IHI_SHEAR.jsp CALC_SPH_COL_BRA_ACCY_WEIGHT() BRACE AXIAL-FORCE DESIGN DATA
MRA(sWt[tid][20][1])= 0
MRA(sWt[tid][20][2])= 0
MRA(sWt[tid][20][3])= 16
MRA(sWt[tid][20][4])= 0
MRA(sWt[tid][20][5])= 23735.108
MRA(sWt[tid][20][6])= 0
MRA(sWt[tid][20][7])= 0
MRA(sWt[tid][20][8])= 0
MRA(sWt[tid][20][9])= 9000
MRA(sWt[tid][20][10])= 274.871
UPPER COLUMN : cbMatl[tid][0] = null
LOWER COLUMN : cbMatl[tid][1] = null
BRACE cbMatl[tid][2] = null
1. gCol[tid][1] =Column Q'tyNc =5Columns
2. gCol[tid][2] =Column ODOD =406.4mm
3. gCol[tid][3] =Column thkthk =6.35mm
4. gCol[tid][4] =Tank HeightHtank =7500mm
5. gCol[tid][5] =Upper Column HeightUCHT =2020mm
6. gCol[tid][6] =Lower Column HeightLCHT =5480mm
7. gCol[tid][7] =Column P.C.DPCD =8780mm
8. gCol[tid][8] =Brace AngleBRang =43.2815deg.
9. gCol[tid][9] =Brace Angle of
Tank center to Brace Center
BRang_CTR =12.6945deg
10. gCol[tid][10] =Column CACA =0mm
11. gCol[tid][11] =Brace ODBR_OD =0mm
12. gCol[tid][12] =Brace ThkBR_Thk =0mm
13. gCol[tid][13] =Brace CABR_CA =0mm
WEIGHT SUMMARY
A) TANK Á¦ÀÛºñ/ÀÚÀçºñ/µµÀåºñ/¿ÜÁÖºñ ºÎ¹®
F0F1F2F3F4F5F6F7F8F9F10
No.DescriptionMain MaterialThk. and SizeUnitQTYNet Wt
kg
Gross Wt
kg
ÀÚÀçºñÁ¦ÀÛºñNo
1SHELL PLATESA553-TYPE1t11 ~ 0SHT1623.73528.957000,000000,0001
2UPPER COLUMN(PLATE) (Àç°íÈ®ÀÎ)nullt0, t8¡¿1577¡¿2020SHT51.0441.148000,000000,0002
3LOWER COLUMN (PIPE)null¨ª406.4¡¿6.35t ¡¿ 5480LPCS51.7161.716000,000000,0003
4BRACE ( PIPE, ¥è= 43.2815 deg.)null¨ª0¡¿0t ¡¿ 7528LPCS10000,000000,0004
5COLUMN ACC'Y (PLATE)A36 OR SS400-LOT000,000000,0005
6BASE PLATE & ANCHOR BOLT
(NO SITE PWHT = NO SLIDEING PLATE)
By SPEC.SEE. Bellow TABLE 4)LOT000,000000,0006
7NOZZLE & MANHOLE(DIP. PIPE)ForgingAssumed Qty : 1919000,000000,0007
8ROOF PLATFORM & STRINGERCLIP:SA553-TYPE1(OR CS)PLATE & SHAPELOT000,000000,0008
9WATER SPRAY (Only Proposal)By SPEC.PIPE & ACC'Y15000,000000,0009
10INTERNAL LADDER (Only Proposal)SA553-TYPE1PLATE & SHAPELOT000,000000,00010
11INSULATION (Only Proposal)By SPEC.-LOT000,000000,00011
12GRAND TOTAL3626.49631.822000,000000,00012
]CODE_CALC() 111 Tank Qty = iMax = [12]
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [4] mySum = [90.0] tUsed = [32.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [70.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [40.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [40.0]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [6] mySum = [90.0] tUsed = [83.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [3] mySum = [90.0] tUsed = [40.5]mm
CODE_CALC() ¿©±â¿¡ µé¾î ¿Ô´ÂÁö È®ÀÎ ÇÊ¿ä m = [2] j = [5] mySum = [90.0] tUsed = [22.5]mm
]
sph.uAry.length = [2] uAry[0].length = [5]
sph.bAry.length = [38] bAry[0].length = [15]
sph.cAry.length = [36] cAry[0].length = [12]
sph.dAry.length = [36] dAry[0].length = [12]
tReq=[
tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1 tReq =  
PR
2SE £­ 0.2P
  £« CA

Div.1 tReq =  
P¡¤R
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.1¡¡ tReq =  
P¡¤Rc
2¡¤S¡¤E £­ 0.2¡¤P
  £« CA

Div.2¡¡ tReq = R · [ EXP(
 0.5 · P ¡¡
 S · E ¡¡
) £­ 1 ] £« CA


½ÃÀ۽ð£ = [2025-04-03 10:20:50.0576]
Á¾·á½Ã°£ = [2025-04-03 10:20:50.0792]

HTML END!!!