Ãâó : ³×À̹ö Ãâó : ¿Â¶óÀÎ ¼ö½ÄÆíÁý±â
ºÐ¼ö ³ªÅ¸³»±â $\frac{2}{4} = \frac{1}{2}$
Áö¼ö ³ªÅ¸³»±â $3^{2} = 9$
·çÆ® ³ªÅ¸³»±â $\sqrt{25} = 5$
$\sum$ < > $\epsilon$ $\alpha$ $\beta$ $\gamma$

BOR Calculation (IMO TYPE C FUEL TANK)
API 650 Sherical Tank EN14620 ALLOWABLE STRESS SADDLE °è»ê¼­BOG °è»ê¼­BOG Each
API 620 °­µµ°è»êVolume Calculation Formulmya[PDF] Vessel Volume Calculator LNGFuelTank.html[³í¹® »çº»] LNGFuelTank[³í¹® ¿øº»]

¼­»ê C3 E1 °­µµ°è»ê¼­ Âü°í
6.4.3 Dynamic Hoop Stresses

The inner tank shall be designed to resist hoop tensile stresses due to the hydrostatic
pressure and seismic forces. The dynamic hoop tensile stresses on inner shell plate due
to seismic forces of OBE and SSE events shall be directly combined with the hoop stresses
by hydrostatic pressure of the product in order to determine the total hoop stress
as the following equations. In here, the dynamic hoop stress would be defined
by the SRSS method of hoop tensile stresses for impulsive,
convective and vertical forces as follows;

When the vertical acceleration is not considered;

Formula...

When the vertical acceleration is specified;

Formula...

in which,

t is the calculated minimum thickness of shell plate of each course

Av is the vertical acceleration parameter

Nh is the hydrostatic hoop force (N/mm)
Ni is the impulsive hoop force defined in Section E.6.1.4 of API 650 (N/mm)
Nc is the convective hoop force defined in Section E.6.1.4 of API 650 (N/mm)
¥òT is the total hoop stress combined with hydrostatic and seismic forces (MPa)
¥òh is hydrostatic hoop stress (MPa)
¥òs is hoop stresses due to impulsive and convective forces of the product (MPa)
11) Dynamic Hoop Stress Calculation (API 650 Annex E 6.1.4)
When, D/H = 1.875 > 1.333 (=4/3)
No.tYNhY< 0.75D NiNc¥òT < or >Sa Check
mmm(N/mm) (N/mm)(N/mm)(Mpa) (Mpa)
109.5 0.760 107.7 < 0.75D 56.0195.9623.16 < 192.6 OK
99.5 3.520 498.7 < 0.75D 245.2378.5480.80 < 192.6 OK
89.5 6.280 889.8 < 0.75D 412.1964.66139.92 < 192.6 OK
79.5 9.040 1280.8 < 0.75D 556.8953.69197.32 >192.6 NO
612.5 11.800 1671.9 < 0.75D 679.3245.12192.03 < 192.6 OK188.22
514.5 14.560 2063.0 < 0.75D 779.5038.59200.44 >192.6 NO196.10
417.5 17.320 2454.0 < 0.75D 857.4133.78193.87 >192.6 NO189.26
320.5 20.080 2845.1 < 0.75D 913.0630.50188.27 < 192.6 OK183.35
222.5 22.840 3236.1 < 0.75D 946.4528.59191.46 < 192.6 OK185.91
125.5 25.600 3627.2 < 0.75D 957.5827.96185.81 < 192.6 OK179.81
Where,
t:Thickness of the shell under consideration (Corroded)mm
Y:Distance from liquid surface to analysis point (Positive down)m
Nh:Product hydrostatic membrane force in shell, Nh : 9.80665*(Y-0.3)*G*(D/2)N/mm
Ni:Impulsive hoop membrane force in shellN/mm
Nc:Convective hoop membrane force in shellN/mm
¥òT:Total combined hoop stress in shellMpa
¥òT = ¥òh ¡¾ ¥òs = { Nh ¡¾ [ Ni©÷ + Nc©÷ + (Av * Nh / 2.5)©÷] 0.5 } / t
D:Tank Diameter 48.000 m
H:Height of product liquid 25.600 m
Ai:Impulsive spectral acceleration parameter 0.330g
Ac:Convective spectral acceleration parameter0.040g
Av:Vertical earthquake acceleration parameter0.388g
G:Specific gravity 0.602
E:Joint efficiency 1.000
Fty:Min. reduced yield strength of bottom shell course344.7 Mpa
Sd:Product design stress 144.8 Mpa
Sa:Allowable stress at Seismic Condition, Sa:Min(0.8*Fy , Sd*1.33)192.6 Mpa

as per API 620 5.5.6

½ÃÀ۽ð£ = [2025-04-03 17:29:56.0773]
Á¾·á½Ã°£ = [2025-04-03 17:29:56.0774]