Vessel Volume & Level Calculation
API 650 Sherical Tank EN14620 ALLOWABLE STRESS SADDLE °è»ê¼­SADDLE pdfcoffeeBOG °è»ê¼­BOG Each
API 620 °­µµ°è»êVolume Calculation Formulmya[PDF] Vessel Volume Calculator LNGFuelTank.html[³í¹® »çº»] LNGFuelTank[³í¹® ¿øº»]


Design Data Input :
DescriptionSymbolValueUnit
D : Shell Inside DiameterD =mm
L : Length of vessel (Tangent Line to Tangent Line)L =mm
H : Depth of headH =mm
A : Distance from tangent lineA =mm
CA : Corrosion Allowance (Shell / Head / Inner Saddle Ring Stiff.)CA =mm
ts : Thickness of shell platets =mm
th : Thickness of head plateth =mm
b : Width of saddleb =mm
tw : Thickness of wear platetw =mm
th : Width of wear platebWear =mm
E : Joint Efficiency ( girth seam )E =
MATL : Shell & Head Plate Material MATL =
Et : Elastic Modulus of Shell PlateEt =MPa
S : Allowable stressS =MPa
Sy : Yield strengthSy =MPa
¥è : Contact angle Saddle bearing angle¥è =degree
Wo : Weight of operating condition Wo =Ton
Wt : Weight of Hydrostatic-test conditionWt =Ton
Wc : Weight of Corroded condition Wc =Ton
We : Weight of Empty condition We =Ton
Pi : Design Internal PressurePi =MPa
Pe : Design External PressurePe =MPa
T-Ring : (Inner) Saddle Ring Size : (H1000x20+400x20) T-RING =


[ LOAD CASE 1 ] Wo : Weight of Operating condition, Wo= 273 Ton
Saddle Strength Calculation Result :
(1) Saddle calculations are based on "Stresses in Large Cylindrical Pressure Vessels on Two Saddle Supports" by L.P. Zick.[PDF ´Ù¿î·Îµå]
DescriptionSymbolValueUnit
D : Shell Inside DiameterD =6000.0mm
L : Length of vessel (Tangent Line to Tangent Line)L =14680.0mm
R : Radius of shellR =3000.0mm
H : Depth of headH =3000.0mm
A : Distance from tangent lineA =840.0mm
P : Internal design pressureP =0.554251MPa
Wo : Weight of Operating condition, Wo= 273 TonWo=Qo =2677215N
Q : Load on one saddleQ = Wo / 21338608N
CA : Corrosion Allowance (Shell / Head / Inner Saddle Ring Stiff.)CA =0.0mm
ts : Thickness of shell platets =13.0mm
th : Thickness of head plateth =9.0mm
b : Width of saddleb =1000.0mm
tw : Thickness of wear platetw =22.0mm
th : Width of wear platebWear =862.0mm
¥è : Contact angle Saddle bearing angle¥è =180.0degree
¥è =3.14159radian
Ratio of ts/Rts/R =0.0043
A(=840.0) < R/2(=1500), Ratio of A/RA/R =0.28
Shell and wear plate materialMATL =SA516-70
Shell Weld Joint Efficiency ( Girth Seam )E =1.0
Allowable stressS =213.3MPa
Yield strengthSy =450.0MPa
T-Ring : (Inner) Saddle Ring Size T-RING =T1000x20+400x20

[Table 1] Value of Constant K
K1 = 3.14 if the shell is stiffened by ring or head (A < R/2) (¸¸ÀÏ SHELL ÀÌ HEAD ¶Ç´Â Stiffener Ring À¸·Î º¸°­ µÇ¾ú´Ù¸é K1=3.14 ÀÓ )
¥è : Contact angle Saddle bearing angle ¥è = 180.0 deg
Contact
¥è(deg.)
K1K2K3K4K5K6
(A/R=0.28)
K7K8K9K10K11
1800.7180.5770.3180.260.2160.0180.6241.1830.250.0170.318

DescriptionSymbolValueUnitDescription
Stress due to internal pressure, Sp = PR / (2ts) Sp =63.952MPa Sp = PR / (2ts)
Stress due to external pressure, Spe = PeR / (2ts) Spe =5.1923MPa Spe = PeR / (2ts)
M1 = Bending Moment at saddles
¡¡ = 2.91340722E8 N-mm
M1 =291KN-m
M2 = Bending Moment at shell midspan
¡¡ = 2.736292469E9 N-mm
M2 =2736KN-m
[ S1.a ] Longitudinal stress at saddle support - Without Stiffeners [³»ºÎ RING º¸°­ ¾ÈµÊ]
Bending Moment of Saddle locationM1 = 291340722N-mm at saddle support
Coefficients K1K1 = 0.718 A/R = 0.28 [TABLE 1]
Coefficients K8K8 = 1.183 A/R = 0.28 [TABLE 1]
Longitudinal stress at Saddle(+ ÀÎÀå), S1.a = (¡¾)M1 / (K1 R©÷ t)S1.a = 3.4681MPaS1.a = M1 / (K1 R©÷ t)
Longitudinal stress at Saddle(- ¾ÐÃà), S1.a = (-)M1 / (K8 R©÷ t)S1.a = -2.1049MPaS1.a = M1 / (K8 R©÷ t)
Maximum tensile stress, (+ ÀÎÀå), S1t.a = S1.a + Sp S1t.a = 67.4201 MPa < St (213.3 MPa) OK
Maximum compressive stress (- ¾ÐÃà), S1c.a = -S1.a - Spe S1c.a = -3.0874 MPa < Sc (59.47 MPa) OK
Tensile stress is acceptable ( S1t.a < St = 213.3 MPa )St = 213.3 MPaSt = S E
Compressive Stress is acceptable ( S1c.a < Sc = 59.47 MPa )Sc = 59.47 MPaSc =Et/29 (ts/R)[2-(2/3)100(ts/R)]
[ S1.a ] Longitudinal stress at saddle support - With Stiffeners [³»ºÎ RING º¸°­ µÈ °æ¿ì]
Bending Moment of Saddle locationM1 = 291340722N-mm at saddle support
M11 = 6Q/12[(8AH + 6A©÷ - 3R©÷ + 3H©÷) / (3L+4H)]M11 = 291340722N-mm at saddle support
Stress due to internal pressure, Sp = PR / (2ts) Sp =63.95MPa Sp = PR / (2ts)
Longitudinal stress at Saddle(+ ÀÎÀå), S1t = (+)M1 / (¥ð R©÷ t)S1t = (+) 0.7926MPaS1t = +M1 / (¥ð R©÷ t)
Longitudinal stress at Saddle(- ¾ÐÃà), S1c = (-)M1 / (¥ð R©÷ t)S1c = (-) 0.7926MPaS1c = -M1 / (¥ð R©÷ t)
Maximum tensile stress, (+ ÀÎÀå), S1t.a = S1t + Sp S1t.a = (+) 64.7447 MPa < St (213.3 MPa) OK
Maximum compressive stress (- ¾ÐÃà), S1c.a = -S1c S1c.a = (-) 0.7926 MPa < Sc (59.47 MPa) OK
[ S1.b ] Longitudinal stress at shell midspan
Bending Moment of Shell mid-pointM2 = 2736292469N-mm at shell center, Shell Áß°£ÁöÁ¡
M22 = 3Q/12[(3L©÷+6R©÷-6H©÷-12AL-16AH) / (3L+4H)]M22 = 2736292469N-mm at shell center, Shell Áß°£ÁöÁ¡
Longitudinal Stress at Shell Ceneter, S1.b = M2 / (¥ð R©÷ t)S1.b = 7.4443MPaS1.b = M2 / (¥ð R©÷ t)
Maximum tensile stress, S1t.b = S1.b + Sp S1t.b = 71.3964 MPa < St (213.3 MPa) OK
Maximum compressive stress (shut down), S1c.b = -S1.b - Spe S1c.b = -12.6367 MPa < Sc (59.47 MPa) OK
Tensile stress is acceptable ( S1t.b < St = 213.3 MPa ) St = 213.3 MPaSt = S E
Compressive Stress is acceptable ( S1c.b < Sc = 59.47 MPa )Sc = 59.4713 MPaSc =Et/29 (ts/R)[2-(2/3)100(ts/R)]
[ S2.a ] [Á¢¼± Àü´Ü] Tangentinal shear stress on shell (S2) A = 840.0(mm) > R/2=1500.0 (mm)
Coefficients K2K2 = 0.577[TABLE 1]
at Shell [CASE a] A > R/2, S2a = K2Q/R⋅ts (L-2A/L+4/3H) S2a = 14.5622MPa < 0.8¡¤S (171 MPa) OK
at Shell [CASE b] A > R/2, S2b = K3Q/R⋅ts (L-2A/L+4/3H) S2b = 8.0256MPa < 0.8¡¤S (171 MPa) OK
[ S2.b ] [Á¢¼± Àü´Ü] Tangentinal shear stress on shell (S2) A = 840.0(mm) ¡Â R/2=1500.0 (mm)
Coefficients K4K4 = 0.26[TABLE 1]
Coefficients K5K5 = 0.216[TABLE 1]
at Shell [CASE d] A ¡Â R/2, S2d = K4Q / (R⋅ts)S2d = 8.9241MPa < 0.8¡¤S (171 MPa) OK
at Head [CASE e] A ¡Â R/2, S2e = K4Q / (R⋅th)S2e = 12.8903MPa < 0.8¡¤S (171 MPa) OK
at Addtional Stress at Head [CASE f] A ¡Â R/2, S3 = K5Q / (R⋅th)S3 = 10.7089MPa < 1.25¡¤S (267 MPa) OK
[ S4 ] Circumferential Bending Stress at the horn of saddle - shell not Stiffened [¿øÁÖ»ó º¸°­¾ÈµÊ, ¿ø»ÔºÎÀ§] (S4)
Coefficients K2K6 = 0.018For Saddle contact angle ¥è=180.0 deg.[TABLE 1]
at Saddle Horn [CASE a] L ¡Ã 8R [º¸°­¾ÈµÊ, ¿ø»ÔºÎÀ§]
  S4a= -Q / [4ts( b+1.56Sqrt(R⋅ts)] - [ 3K6Q / (2ts©÷)]
S4a = -233.54MPa < 1.5¡¤S (320 MPa) OK
at Saddle Horn [CASE b] L < 8R [º¸°­¾ÈµÊ, ¿ø»ÔºÎÀ§]
  S4b= -Q / [4ts( b+1.56Sqrt(R⋅ts)) - [ 12K6Q / (2ts©÷)]
S4b = -369.32MPa < 1.5¡¤S (320 MPa) NG! ³»ºÎ RING º¸°­ ÇÊ¿ä
[ S5.a ] Circumferential compression Stress at bottom of Shell (S5.a : Wear Plate °¡ ¾ø´Ù°í °¡Á¤ÇÏ°í °è»ê ÇÑ °Í.)
Shell plate thicknessts = 13mm
Wear plate thicknesstw =22mm
Saddle Widthb =1000mm
Coefficients K7 = K7 =0.654
a) when, No Wear Plate S5 = Wear Plate °¡ ¾ø´Ù°í °¡Á¤ÇÏ°í °è»ê ÇÑ °Í.
Note: ts = ts + tw only if wear plate is attached to shell and width
of wear plate is a min. of b+1.56Sqrt((R⋅ts)) Width of wear plate
  S5a = -K7 Q / [ts (b+1.56Sqrt(R⋅ts))]
S5a = -51.45MPa < 0.5Sy (225 MPa) OK
[ S5.b ] Stress at bottom of Shell, Wear plate-Ring compression in shell over saddle (S5.b : Wear Plate°¡ ÀÖÀ» °æ¿ì)
Attached angle of wear plate ¥á =95degree
Combind Thickness of shell wear plate thicknesstw =22mm
Width of wear plate, bWear =862mm
Effective Section Area Aeff = ts [b+1.56Sqrt(R⋅ts)]+ twbWearAeff =45556mm©÷
Coefficients K7 = K7 =0.654
b) Stress at bottom of Shell, Wear plate-Ring compression, S5b = -K7Q / AeffS5b = -19.2MPa < 0.5Sy (225 MPa) OK
[ S6 ] Inner Ring Stiffener Stress at the saddle (S6), when Ring Stiffener Attached shell inside
Coefficients K9, K10 refer to P/V HANDBOOK page 95 Table.
Coefficients K9 when, ¥è = 160 degree.K9 =0.25
Coefficients K10 when, ¥è = 160 degree.K10 =0.017
Acomb =52927mm©÷Acomb= 318.0 cm2
C =509.5mm C1 = 56.32 mm, C2= 44.98 mm, b=32.31 mm
R =3000mm
Icomb =8192000000mm©ùIx= 448904.52 cm©ù
a) Ring Inside. Compression at the Shell Governs
  S6a = -(K9Q / A) - [(K10QRC) / I]
S6a =-10.57MPa < 1.0¡¤S (213 MPa) OK
b) Ring Outside Stress at the Shell
  S6b = -(K9Q / A) + [(K10QRC) / I]
S6b =-2.08MPa < 0.5¡¤S (225 MPa) OK
Stiffener Size : T1000x20+400x20¡¡¡¡¡¡¡¡Shell Section : t13 x 323 mm
No.bdA=bdyAyh = y-C1Ah©÷Ig=bd©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
340.02.080.0100.3802443.98154732.226.67
22.098.0196.050.39858.8-6.027105.48156865.33
Shell32.3081.342.00.6527.3-55.67130168.935.92
SUM¢² = 318 17910.1 292006.6156897.92
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 56.321cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 44.979cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=318.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =448,905cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =7970.46cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 9980.31cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 37.57cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 6.73cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 318cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 276cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.11mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 216.66kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 1323kgRing 1 PCS Áß·®(kg)


0M1 = Bending Moment at saddles
¡¡ = 2.91340722E8 N-mm,
M1 =2.91340722E8N-mm, M1 = 291 KN-m
1M2 = Bending Moment at shell midspan
¡¡ = 2.736292469E9 N-mm,
M2 =2.736292469E9N-mm, M2 = 2736 KN-m
2Sp = Stress due to internal pressure
    Sp = PR / 2ts
Sp =63.95 MPa
3S1 = Longitudinal bending at saddles - without stiffeners, tension (+ÀÎÀå)
    S1a = (£«) M1 / (K1 R©÷ ts)
S1a =(£«) 3.47 MPa
4S2 = Longitudinal bending at saddles - without stiffeners, compression (-¾ÐÃà)
    S1b = (£­) M1 / (K8 R©÷ ts)
S1b =(£­) 2.1 MPa
5S3 = Longitudinal bending at saddles - with stiffeners (+ÀÎÀå, -¾ÐÃà)
    S1c = (¡¾) M1 / (¥ð R©÷ ts)
S1c =( ¡¾ ) 0.79 MPa
6S4 = Longitudinal bending at shell midspan, tension at bottom, compression at top (+ÀÎÀå, -¾ÐÃà)
    S1d = (¡¾) M2 / (¥ð R©÷ ts)
S1d =( ¡¾ ) 7.44 MPa
7S5 = Tangential shear - shell stiffened in plane of saddle (³»ºÎ RING ¿¡ ÀÇÇÏ¿© º¸°­µÊ)
    S5 = S2b = K3Q/(¥ðRts) [L-2A / L+4/3H]
S5=S2b=8.03 MPa
8S6 = Tangential shear - shell not stiffened, A > R/2 (º¸°­¾ÈµÊ)
    S6 = S2a = K2Q/(Rts) [L-2A / L+4/3H]
S6=S2a =14.56 MPa
9S7 = Tangential shear - shell not stiffened except by heads, A ¡Â R/2 (º¸°­¾ÈµÊ)
    S7 = S2d = K4Q/(Rts)
S7=S2d =8.92 MPa
10S8 = Tangential shear in head - shell not stiffened, A ¡Â R/2 (º¸°­¾ÈµÊ)
    S8 = S2e = K4Q/(Rth)
S8=S2e =12.89 MPa
11S8a = Tangential shear in head , ( Addtional Stress ), A ¡Â R/2 (º¸°­¾ÈµÊ)
    S8a = S3 = K5Q/(Rth)
S8a=S3 =10.71 MPa
12S8b = Tangential shear in head , º¸°­µÊ OR A > R/2 = S8 = 0 MPa
    S8b = 0.0
S8b = 0.0 MPa
13S9 = Circumferential bending at horn of saddle - shell not stiffened, L ¡Ã 8R
    S9=S4a= -Q / [4ts( b+1.56Sqrt(R⋅ts)] - [ 3K6Q / (2ts©÷)]
S9=S4a=-233.54 MPa
14S10 = Circumferential bending at horn of saddle - shell not stiffened, L < 8R
    S10=S4b= -Q / [4ts( b+1.56Sqrt(R⋅ts)) - [ 12K6Q / (2ts©÷)]
S10=S4b=-369.32 MPa
15S11 = Additional tension stress in head - shell not stiffened, A ¡Â R/2
    S11 = S3 = K5Q/(Rth)
S11=S3 =10.71 MPa
16S12 = Circumferential compressive stress - stiffened or not stiffened, saddles attached or not)
    S12=S5a = -K7 Q / (ts [b+1.56Sqrt(R⋅ts)]
S12=S5a =-51.45 MPa
17S13 = Circumferential stress in shell with stiffener in plane of saddle
    S13=S6a = -(K9Q / Acomb) - [(K10QRc) / Icomb]
S13=S6a =-10.57 MPa
18S14 = Circumferential stress in ring stiffener
    S14=S6b = -(K9Q / Acomb) + [(K10QRc) / Icomb]
S14=S6b =-2.08 MPa

[Table 1] Value of Constant K [P/V handbook, Page No. 88]
Contact
¥è(deg.)
K1K2K3K4K5K6
A=840.0
R=3000.0
A/R=0.28
K7K8K9K10K11
1200.3351.1710.31830.880.4010.0180.760.6030.340.0530.204
1220.3451.1390.31830.8460.3930.0180.7530.6180.3380.05140.2076
1240.3551.1080.31830.8130.3850.0180.7460.6340.3360.04980.2112
1260.3661.0780.31830.7810.3770.0180.7390.6510.3340.04820.2148
1280.3761.050.31830.7510.3690.0180.7320.6690.3320.04660.2184
1300.3871.0220.31830.7220.3620.0180.7260.6890.330.0450.222
1320.3980.9960.31830.6940.3550.0180.720.7050.3280.04340.2258
1340.4090.9710.31830.6670.3470.0180.7140.7220.3260.04180.2296
1360.420.9460.31830.6410.340.0180.7080.740.3240.04020.2334
1380.4320.9230.31830.6160.3340.0180.7020.7590.3220.03860.2372
1400.4430.90.31830.5920.3270.0180.6970.780.320.0370.241
1420.4550.8790.31830.5690.320.0180.6920.7960.3160.0360.2446
1440.4670.8580.31830.5470.3140.0180.6870.8130.3120.0350.2482
1460.480.8370.31830.5260.3080.0180.6820.8310.3080.0340.2518
1480.4920.8180.31830.5050.3010.0180.6780.8530.3040.0330.2554
1500.5050.7990.31830.4850.2950.0180.6730.8760.30.0320.259
1520.5180.7810.31830.4660.2890.0180.6690.8940.2980.03080.263
1540.5310.7630.31830.4480.2830.0180.6650.9130.2960.02960.267
1560.5440.7460.31830.430.2780.0180.6610.9330.2940.02840.271
1580.5570.7290.31830.4130.2720.0180.6570.9540.2920.02720.275
1600.5710.7130.31830.3960.2660.0180.6540.9760.290.0260.279
1620.5850.6980.31830.380.2610.0180.650.9940.2860.02520.2828
1640.5990.6830.31830.3650.2560.0180.6471.0130.2820.02440.2866
1660.6130.6680.31830.350.250.0180.6431.0330.2780.02360.2904
1680.6270.6540.31830.3360.2450.0180.641.0540.2740.02280.2942
1700.6420.640.31830.3220.240.0180.6371.0790.270.0220.298
1720.6570.6270.31830.3090.2350.0180.6351.0970.2660.0210.302
1740.6720.6140.31830.2960.230.0180.6321.1160.2620.020.306
1760.6870.6010.31830.2830.2250.0180.6291.1370.2580.0190.31
1780.7020.5890.31830.2710.220.0180.6271.1580.2540.0180.314
1800.7180.5770.31830.260.2160.0180.6241.1830.250.0170.318


¸ÅÅ©·ÎÆ÷ÇÔ_SHI_SN2430_D12m_°ßÀû°­µµ°è»ê (°ßÀû¿ø°¡).xlsm - [PV4th SADDLES] Sheet Âü°í

Pressure Vessel Design Manulal (4th edition) / Table 4-27 Large diameter saddle supports
Vessel DIA.BASE PLATE LENGTHSADDLE HEIGHTBolt Hole Dia.INNER RIB PITCH BASE PLATE WidthBOLT PITCHSaddle BTM WidthSaddle Top WidthWear Plate Width Rib Plate µÎ²²RIB ¼ö·®BOLT ¼ö·®Base Plate µÎ²²Gusset Plate µÎ²² Wear Plate µÎ²²Approx wt for 2 Saddles (kg)Saddle RIB Height(Center)
DIA(ft)DIA(mm)ABDEFGGB=F-50.8GTHJNntbtgtwwth=B-D/2
1442673937 2337 35 483 457 229 406 711 864 19 8825 19 19 3175203.2
1545724343 2540 35 533 457 229 406 711 864 19 8825 19 19 3629254
1648774648 2743 35 457 457 235 406 711 864 25 10829 22 22 4536304.8
1751824902 2896 41 483 533 273 483 787 940 25 10832 25 25 4990304.8
1854865258 3099 41 432 533 279 483 787 940 29 121235 29 25 5443355.6
2060965258 3353 41 432 533 279 483 787 940 29 121235 29 29 7031304.8
2267065563 3658 48 457 610 318 559 864 1016 32 121238 32 32 8618304.8
2473156121 3962 48 432 610 318 559 864 1016 32 141238 32 32 9979304.8
2679256477 4369 48 457 610 318 559 864 1016 35 141241 32 32 11793406.4
2885346985 4674 54 432 686 356 635 940 1092 35 161641 35 32 14061406.4
3091447823 4978 54 483 686 362 635 940 1092 38 161644 38 35 16783406.4
3297548331 5283 54 457 686 362 635 940 1092 38 181644 38 35 19958406.4
34103638788 5588 60 483 787 406 737 1041 1194 44 181651 44 35 24494406.4
36109739246 5842 60 457 787 406 737 1041 1194 44 201651 44 35 29937355.6
38115829754 6198 60 483 813 413 762 1067 1219 51 201657 51 38 36287406.4
401219210262 6502 67 508 864 451 813 1118 1270 51 202064 51 38 45359406.4
Notes: [SADDLE STANDARD DWG(pdf)]
¡¡1. All dimensions are in inches unless noted otherwise
¡¡2. All saddles in this size range must be fully designed. The dimensions shown are a starting place or to be used for estimating only!
¡¡3. Assume that anchor bolts diameter is d - 0.125, where d is the diameter of the hole. Assume that slots for sliding saddle are 6 d long.
¡¡4. N = Number of ribs
¡¡5. n = Number of anchor bolts

¸ÅÅ©·ÎÆ÷ÇÔ_SHI_SN2430_D12m_°ßÀû°­µµ°è»ê (°ßÀû¿ø°¡).xlsm - [PV4th SADDLES] Sheet Âü°í





½ÃÀ۽ð£ = [2024-12-05 09:28:43.0906]
Á¾·á½Ã°£ = [2024-12-05 09:28:43.0911]

1Ãâó : Div2 SADDLE °è»ê¼­ [PDF COFFE]   2Ãâó : Div2 SADDLE °è»ê¼­ [PDF COFFE]
SADDLE °è»ê¼­ [PDFCOFFE] SITE
SADDLE °è»ê¼­ ÈǸ¢ÇÑ »ùÇà [DESIGN OF PRESSURE VESSEL SADDLE AND ZICK ANALYSIS]
SADDLE DESIGN UNDER OPERATING CONDITION_ASME Sec VIII Div 2 based on the Zick method.xlsx

Design Data Input :
Design ParametersSymbolValueUnit
Design TemperatureT =220¡ÆC
Claculated Design PressureP =1.471MPa15kg/cm©÷g
Inside Shell DiameterD =4235mm
Corosion AllowanceC =3.2mm
Corroded Inside Shell Diameter = (D + (2*C))Dc =4241.4mm
Corroded Inside Shell RadiusR =2120.7mm
Corroded Shell thicknests =3.2mm
Mean radius = (R + (ts/2)))Rm =2122.3mm
Shell length (TL to TL)L =13253mm
Head thicknessth =28mm
Thickness of wear platetr =18mm
Inside Depth of head in corroded conditionH =1060.35mm
Operating weight of the vesselWo =2450377.8N249869kg
Distance from Tangent line of vesel to Center of saddleA =800mm
Distance from center line of vessel to bottomB =2200mm
Number of saddlen =2Nos.
Center of Saddle to saddel distanceLs =8953mm
Length of base plateE =4370mm
saddle widthb =395mm
Wear Plate widthb1 =1200mm
Joint Efficiency in shellE =0.85
Allowable stress value for shell material
[As Per ASME Section - II, Part - D, Subpart 1, Table 1A]
S =137.88MPa1406 kg/cm©÷
Allowable stress value for head material
[As Per ASME Section - II, Part - D, Subpart 1, Table 1A]
S =137.88MPa1406 kg/cm©÷
Sr Allowable stress value for R.F Pad (wear plate) Material
[As Per ASME Section - II, Part - D, Subpart 1, Table 1A]
Sr =137.88MPa1406 kg/cm©÷
Minimum Yield stress value for shell
[As Per ASME Section - II, Part - D, Subpart 1, Table - Y1]
Sy =260MPa2651.272 kg/cm©÷
Minimum Wear Plate Effective Width to be considered in analysis [b1']
b1' = min [b + 1.56 * Sqrt( Rm * ts ), 2a ]
b1' = min [ 395 + 1.56 * SQRT ( 2122.3 x 3.2 ) , 2 x 800 ] = 523.559 mm
Wear Pad Width 1200 mm is less than 1.56 * Sqrt(Rm*t) and less than 2a. The wear plate will be ignored.

AAA = [ASME SEC. VIII Div.2 Para. 4.15.3.2 Moment and Shear Force.
b1' = min[b + 1.56*sqrt( Rm*ts ), 2a ] = [523.60] mm
M1 = [-6979614.46] N-mm
M2 = [2913488877.01] N-mm
M¥â = K7 * Q * Rm = [25805831.89] N-mm
M¥â = K10 * Q * Rm = [-319016416.95] N-mm
Load, Q = [121529.00] N One Saddle ¹Ý·Â, maximum value of the reaction at the saddle support from weight and other loads as applicable.
Load, T = [1002477.81] N One Saddle Àü´Ü·Â, maximum shear force at the saddle
R = [2120.70] mm, Rm = [1807.50] mm,
ASME SEC. VIII Div.2 Para. 4.15.3.3 Longitudinal Stress.
¥ò1 = [423.45] MPa < S*E = [117.20] MPa OK
¥ò2 = [552.14] MPa < S*E = [117.20] MPa OK
¥ò3 = [487.95] MPa < S*E = [117.20] MPa OK
¥ò4 = [487.64] MPa < S*E = [117.20] MPa OK
¥ò3* = [488.90] MPa < S*E = [117.20] MPa OK , K1 = [0.1393]
¥ò4* = [487.17] MPa < S*E = [117.20] MPa OK , K1* = [0.2456]

ASME SEC. VIII Div.2 Para. 4.15.3.4 Shear Stresses.
¥ó1 = [46.99] MPa < Min(0.8*S, 0.533*Sy) = [110.30] MPa OK , (a) The shear stress in the cylindrical shell with a stiffening ring
¥ó2 = [134.55] MPa < Min(0.8*S, 0.533*Sy) = [110.30] MPa OK , (b) The shear stress in the cylindrical shell with stiffening rings on both sides of the saddle support
¥ó3 = [112.22] MPa < Min(0.8*S, 0.533*Sy) = [110.30] MPa OK , (d)-(Eq. 4.15.13) The shear stress in the cylindrical shell without stiffening ring(s and For Spherical head (Formed Head )
¥ó3* = [12.83] MPa < Min(0.8*S, 0.533*Sy) = [110.30] MPa OK , (d)-(Eq. 4.15.14) For 2:1 Ellipse head OR 10% Dish Head
ASME SEC. VIII Div.2 Para. 4.15.3.4 Shear Stresses.
¥ò5 = [118.51] MPa < 1.25*S = [172.35] MPa OK (d)-(2) Eq. 4.15.16 Membrane stress in a torispherical or elliptical head acting as a stiffener, the coefficient K4 is given in

ASME SEC. VIII Div.2 Para. 4.15.3.5 Circumferential Stress.
  (c) Circumferential stresses in the cylindrical shell without stiffening ring(s) = (CIRCUMFRENCIAL STRESSES WITHOUT WEAR PLATE)
    (1) The maximum compressive circumferential membrane stress in the cylindrical shell at the base of the saddle support
¥ò6 = [-52.7] MPa < S = [137.88] MPa OK
¥ò7 = [0] MPa < S = [137.88] MPa OK
¥ò7* = [-2470.12] MPa < S = [137.88] MPa OK
¥ò6,r = [-3.47] MPa < S = [137.88] MPa OK
¥ò7,r = [0] MPa < S = [137.88] MPa OK
¥ò7,r* = [-64.39] MPa < S = [137.88] MPa OK
ASME SEC. VIII Div.2 Para. 4.15.3.5 Circumferential Stress. ³»ºÎ º¸°­¸µÀÌ ÀÖÀ» °æ¿ì »ùÇà : Saddle_Analysis ( ASME Div2 Examples ).pdf)
(d) Circumferential stresses in the cylindrical shell with a stiffening ring along the plane of the saddle support.
(1) The maximum compressive circumferential membrane stress in the cylindrical shell shall be computed using eq. (4.15.32). The coefficient K5 is given in Table 4.15.1.
¥ò6* = [-85.27] MPa < S = [137.88] MPa OK
¥ò8* = [0.00] MPa < S = [137.88] MPa OK
¥ò9* = [0.00] MPa < S = [137.88] MPa OK

[Table 1] Value of Constant K [ASME Section VII, Div. 2, Fig 4.15.5, and Table 4.15.1]
Contact
Angle
(¥è, deg)
K1K1*K2K3K4K5K6K7K8K9K10
1390.13930.24560.91150.6040.33020.6730.03170.00960.3021-0.0722-0.1191

ASME SEC. VIII Div.2 Para. 4.15.3 SADDLE SUPPORTS FOR HORIZONTAL VESSELS
0Q =121529NEqn. 4.15.0
1M1 =-6979614N-mmEqn. 4.15.1
2M2 =2913488877N-mmEqn. 4.15.2
3T =1002478NEqn. 4.15.3
4¥ò1 =423.45MPaEqn. 4.15.4
5¥ò2 =552.14MPaEqn. 4.15.5
6¥ò3 =487.95MPaEqn. 4.15.6
7¥ò4 =487.64MPaEqn. 4.15.7
8¥ò3* =488.90MPaEqn. 4.15.8
9¥ò4* =487.17MPaEqn. 4.15.9
10Sc =18.75MPaEqn. 4.15.10
11¥ó1 =46.99MPaEqn. 4.15.11
12¥ó2 =134.55MPaEqn. 4.15.12
13¥ó3 =112.22MPaEqn. 4.15.13
14¥ó3* =12.83MPaEqn. 4.15.14
15When, Torispherical Head, ¥ò5 =62.76MPaEqn. 4.15.15
16When, 2:1 Ellipsoidal head, ¥ò5 =118.51MPaEqn. 4.15.16
17Flat Colver, ¥ò5 =0.00MPaEqn. 4.15.17
18M¥â =25805832N-mmEqn. 4.15.18
19M¥â =-319016417N-mmEqn. 4.15.19
20x1=x2 =64.28mmEqn. 4.15.20
21¥ò6 =-52.70MPaEqn. 4.15.21
22If L ¡Ã 8*Rm, then ¥ò7 =0.00MPaEqn. 4.15.22
23If L < 8Rm, then ¥ò7* =-2470.12MPaEqn. 4.15.23
24b1 =1200.00mmEqn. 4.15.24
25¥ò6r =-3.47MPaEqn. 4.15.25
26¥ç =1.00Eqn. 4.15.26
27¥è1 = ¥è + ¥è / 12 =150.58deg.Eqn. 4.15.27
28¥ò7,r =0.00MPaEqn. 4.15.28
29¥ò7*,r =-64.39MPaEqn. 4.15.29
30If L ¡Ã 8*Rm, then ¥ò7,1 =0.00MPaEqn. 4.15.30
31If L < 8Rm, then ¥ò7*,1 =0.00MPaEqn. 4.15.31
32¥ò6* =-85.27MPaEqn. 4.15.32
33¥ò8 =1246.22MPaEqn. 4.15.33
34¥ò9 =-1625.57MPaEqn. 4.15.34
]
ADDITIONAL LONGITUDINAL FORCES :- [As Per Dennis Moss, Page No. 256]
¡¡¡¡CASE A ) Pier Deflection, FL1 :

¡¡¡¡¡¡¡¡FL1 = Ks Y / n , Ks : N.R , Pier Spring Rate

¡¡¡¡¡¡¡¡This is not a case of Pier Deflection.

¡¡¡¡CASE B ) Expansion / Contraction due to Friction Load, FL2 :

¡¡¡¡¡¡¡¡¥ì = 0.06 friction coefficient of sliding Material [As Per Dennis Moss, Page No. 267]

¡¡¡¡¡¡¡¡FL2 = ¥ì * Wo = 0.06 x 2451214.89 = 147072.89 N

¡¡¡¡¡¡¡¡[Teflon to Teflon friction]

¡¡¡¡CASE C ) Bundle Pulling Force (Load applies to fixed saddle) , Fp :
¡¡¡¡¡¡¡¡Fp = N.R , No additional Pulling force is applied


CALCULATION OF SADDLE REACTION FORCES, Q
¡¡¡¡FL = Wind Force towards longiudinal direction 4710 N
¡¡¡¡¡¡¡¡(Calculated in wind Load calculation)
¡¡¡¡Ft = Wind Force towards Transverse direction per saddle 5928 N
¡¡¡¡¡¡¡¡(Calculated in wind Load calculation)
¡¡¡¡FL' = Seismic Force towards longiudinal direction 18352.1 N
¡¡¡¡¡¡¡¡(Calculated in Seismic Load calculation)
¡¡¡¡Ft' = Seismic Force towards Transverse direction per saddle 9176.05 N

Saddle Reaction Force due to Wind in Transverse Direction Ft, [Fwt]: [As Per Dennis Moss, Page No. 260]
¡¡¡¡Fwt = 3 * Ft * B / E = 3 x 5928 x 2200 / 4370 = 8953.043 N
Saddle Reaction Force due to Wind in Longitudinal Direction FL, [FwL]: [As Per Dennis Moss, Page No. 260]
¡¡¡¡FwL = Max (FL , FL1, FL2, Fp) * B / Ls
¡¡¡¡FwL = Max (4710, N.R, 147072.89, N.R) * 2200 / 8953 = 36139.882 N
Saddle Reaction Force due to Earthquake or Friction Longitudinal Direction FL' , [FsL]
¡¡¡¡FsL = Max (FL' , FL1, FL2, Fp) * B / Ls
¡¡¡¡FsL = Max (18352.1, N.R, 147072.89, N.R ) * 2200 / 8953 = 36139.882 N
Saddle Reaction Force due to Earthquake in Transverse Direction Ft, [Fst]
¡¡¡¡Fst = 3 * Ft' * B / E = 3 x 9176.05 x 2200 / 4370 = 13858.565 N


LOAD COMBINATION RESULTS FOR Q : [As Per Dennis Moss, Page No. 260]
¡¡¡¡Longitudinal, Q1
¡¡¡¡Q1 = Wo / n + Max (FwL , FsL)
¡¡¡¡Q1 = 2451214.9 / 2 + Max (36139.882, 36139.882 ) = 1261747.327 N

¡¡¡¡Transverse, Q2
¡¡¡¡Q2 = Wo / 2 + Max (Fwt , Fst)
¡¡¡¡Q2 = 2451214.9 + Max (8953.043, 13858.565 ) = 1239466.01 N

¡¡¡¡Now,
¡¡¡¡Q = Mx of Q1 and Q2 = Max ( 1261747.327, 1239466.01 ) = 1261747.327 N
¡¡¡¡Where, A ¡Â 0.25L = 800 ¡Â 3313.25 Distance A is acceptable



HORIZONTAL VESSEL ANALYSIS
Wear Plate is Welded to the Shell, k = 0.1 [As Per ASME Section VII, Div. 2, Clause 4.15.6]
Stress Coefficients For Horizontal Vessels on Saddle Supports [As Per ASME Section VII, Div. 2, Table 4.15.1]
[Table 1] Value of Constant K [ASME Section VII, Div. 2, Fig 4.15.5, and Table 4.15.1]
Contact
Angle
(¥è, deg)
K1K1'K2K3K4K5K6K7K8K9K10
1390.1392850.2456070.911520.604020.3302110.699750.0385480.0096370.3181120.2424580.041452
The angles ¥è, ¥Ä, ¥á, ¥â, and ¥ñ are in radians in the saddle calculations
[As Per ASME Section VII, Div. 2, Fig 4.15.5, and Table 4.15.1]

DescriptionFormulaSymbolValue
rad
Value
¡Æ(deg)
Saddle Contact angle, ¥è = 139 ¡Æ(deg)¥è = 2.426¥è = 139
¥Ä = (¥ð / 6) £« (5¥è / 12) ¥Ä =1.5344¥Ä = 87.9167
¥á = 0.95(¥ð £­ ¥è/2) ¥á =1.8322¥á = 104.975
¥â = ¥ð £­ (¥è/2) ¥â =1.9286¥â = 110.5
¥ñ = 88.163 ¡Æ(deg)¥ñ =1.5387¥ñ = 88.163



Saddle Contact angle, ¥è =139 Degree 2.426Radian
¥Ä =(¥ð / 6) + (5 ¥è / 12) 1.535Radian
¥á =0.95 (¥ð - ¥è/2)1.833Radian
¥â =( ¥ð - ¥è/2)1.929Radian
[As Per ASME Section VII, Div. 2, Table 4.15.1]¥ñ =90.143 Degree1.573Radian
Saddle Contact angle, ¥è = 139 Degree = 2.426 Radian
¥Ä = (¥ð / 6) + (5 ¥è / 12) = 1.535 Radian
¥á = 1.833 Radian
¥â = 1.929 Radian
¥ñ = 90.143 Degree [As Per ASME Section VII, Div. 2, Table 4.15.1] 1.573 Radian

The angles ¥Ä, ¥è, ¥â, and ¥ñ are in radians in the calculations.
(2007³âµµ ÆÇÀÌ »óÅÂÁÁÀº ĸÃçÇÊ¿ä) ASME SEC. VIII-Div.2 Table 4.15.1 Stress Coefficients For Horizontal Vessels on Saddle Supports