2022³â 3¿ù 16ÀÏ ÃÖÁ¾ ¼öÁ¤ ÇÔ ½ÃÀ۽ð£ = [2024-12-05 00:59:19.0607]
Vessel Volume & Level Calculation (2021³â 11¿ù 7ÀÏ ¼öÁ¤) HTML Ư¼ö¹®ÀÚ ¸®½ºÆ® (¡î √ √ ¥ð ¨ª ©ª £í©÷£í©ø£í©ù ¤§ £« £­ ¡¿ ¡À ¡¾ ¡¾ ¡Â ¡Ã ¡É ¢º ¤º
¥Á ¥Â ¥Ã ¥Ä ¥Å ¥Æ ¥Ç ¥È ¥É ¥Ê ¥Ë ¥Ì ¥Í ¥Î ¥Ï ¥Ð ¥Ñ ¥Ò ¥Ó ¥Ô ¥Õ ¥Ö ¥× ¥Ø ¥á ¥å ¥ï ¥ï ¥ô ¥ã
¥á ¥â ¥ã ¥ä ¥å ¥æ ¥ç ¥è ¥é ¥ê ¥ë ¥ì ¥í ¥î ¥ï ¥ð ¥ñ ¥ò ¥ó ¥ô ¥õ ¥ö ¥÷ ¥ø ¥é ¥é ¥é ¥ô ¥é ¥ã
¡îax2 + bx + c
Ãâó : http://kor.pe.kr/util/4/charmap2.htm

Ãâó :
HTML¿¡¼­ ¼ö½Ä Ç¥ÇöÇϱâ
Vessel VolumePV Calc (¿ë·®º°) API 650 API 620SEISMIC CALCSherical Tank EN14620 ALLOWABLE STRESS SADDLE °è»ê¼­BOG °è»ê¼­
Fuel Tank List Fuel Tank [STD] Fuel Tank [SUNBO] P/V WEB Calc[cis]Volume Calc [Web]Volume Calc [¿¢¼¿]Volume Formula [PDF]°æÆÇ °è»ê±â(ÀϺ»)[³í¹® »çº»] [³í¹®¿øº».pdf]
dwtListNew.jspCost Code (¿ø°¡ÄÚµå)Cost EstimationJAVA APIBOG °è»ê¼­LH2_TANK
BOG °è»ê
Sphere º¼·ý°è»ê

Orientation :
Design Code :
Material(MPa) ÁÖÀÇ?/FONT> :
Vessel Diameter (D)
(mm)
Design Liquid Level (DLL)
(mm)
Vessel Length (T.L to T.L)
(mm)
(USED) Head Thk. (tHead)
(mm)
Sdaale °£ °Å¸® (Lsaddle)
(mm)
Calc!
Internal Pressure(Pi)
(MPa)
External Pressure(Pe)
(MPa)
(F/V = 0.101325 MPa)
Allowable Stress(MPa) ÁÖÀÇ
(Blank=ÀçÁú¿¡ µû¶ó ÀÚµ¿ÀÔ·Â)
S=(MPa), Sy= (MPa)
Specific Gravity (ºñÁß)
Joint Effciency
Corrosion Allowance(CA)
(mm)
(USED) Cylinder Thk. (tCyl)
(mm)
90% DLL = 0.8042*D
= 10052.5 (mm)
Volume And Surface Area °è»ê¹æ¹ý ¼±ÅÃ
(2:1 Ellipsoidal and 10% Dish Head)
For Bi-lobe(or Tri-lobe)
Tank C.L to C.L (C)

C = D/(1.8~1.5)»çÀÌ
Factor 1.8 ~ 1.5
Volume To Dia.(Sphere)
V = £í©ø
Sphere Dia. (D) :
D = (6*V/3.14)1/3

D = 22500.0 mm
A) For Spherical Tank B) For Hemi-Spherical Head C) For 2:1 Ellipsoidal Dish Head D) For 10% Dish Head
1) Spherical Tank : 12500 mm ASME VIII, Div. 1
No.DDLLRNominal CapacityStorage CapacityStorage
Ratio
Surface Area PiPsP=Pi£«Ps tHeadtShell
No.mmmmmm m©øm©ø(%)m©÷ MPaMPaMPammmm
012500108506250 1022.6539973.901895.233490.90.47860.05320.53189.649.64
Where,¡¡90% Capacity DLL = 0.8042 ¡¿ D = 10052.5 (mm), Vnom = ¥ð¡¿D©ø/ 6 = 1022.6539 (m©ø)
¡¡¡¡¡¡(°øĪ¿ë·®) Vnom = 1022.6539 (m©ø)
¡¡¡¡¡¡(ÀúÀå¿ë·®) Vsto = 973.9018 (m©ø)
¡¡¡¡¡¡( Ç¥¸éÀû ) AREA = ¥ð¡¿D©÷= 490.874 m©÷
¡¡¡¡
[Table 1] Strength Calculation
¡¡Vessel Size(D) : 12500 mm
¡¡Where, 90% Capacity DLL = 0.8042 ¡¿ D = 10053 (mm)
o (³»¾Ð¿¡ ÀÇÇÑ ÇÊ¿äµÎ²²ÀÇ °è»ê) Required Thickness Calculation [Div.1]
¡¡Vessel Material : SA553-Type.1
¡¡Allowable Stress, S = 187.0 MPa, ASME SEC. II Part D, [TABLE 1A]
¡¡Total Pressure, P = Pi £« Ps = 0.5318 MPa ( Pi=0.4786 MPa, Ps=0.0532 MPa, Ps:Static Head )
¡¡Weld Joint Effciency, E = 1
¡¡Tank Type : Spherical Shell
¡¡t_Equator = Peq¡¿R / ( 2SE - 0.2¡¿Peq ) £« CA(0.75) = 9.13 mm, Peq = 0.5012 MPa
¡¡t_Bottom = P¡¿R / ( 2SE - 0.2P ) £« CA(0.75) = 9.64 mm, P = 0.5318 MPa
o (Àüü Ç¥¸éÀû) AREA = ¥ð¡¿D©÷= 490.874 m©÷

o µÎ²² Check : , Therefore, tDesign Thick. < Used Thick. OK
¡¡Assumed Vessel Weight = 61.654 Ton (Sphere Shell Thick, 16.0 mm)



o Design External Pressure of Spherical Shell:

¡¡ Material : SA553-Type.1, Ro = Ri £« headThk - CA = 6265.25 mm, tc= 15.25 mm
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( Ro / tc ) = 0.00030426
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( 6265.25 / 15.25) = 0.00030426
¡¡ From ASME SEC. II Part D Fig. CS-3 Curve [Metric] B = 30.4258 MPa
¡¡ Allowable External Pressure Pa = B / ( Ro / tc ) = 0.07406 MPa
¡¡o Buckling Check of Head Plate, Pe(0.045) < Pa(0.0741) MPa. OK
   
1) Cylindrical Tank : 12500(D) ¡¿ 22230(TL) ¡¿ 34730(L) mm ASME VIII, Div. 1
No.DDLLRNominal CapacityStorage CapacityStorage
Ratio
Surface Area PiPsP=Pi£«Ps tHeadtShell
No.mmmmmm m©øm©ø(%)m©÷ MPaMPaMPammmm
012500108506250 3750.68533488.842093.0191363.80.47860.05320.53189.6418.55
Where,¡¡R = 0.5¡¿D,¡¡¡¡Vnom = ¥ð¡¿[(D©ø/ 6) £« (D©÷¡¿ L / 4)] = 3750.6853 (m©ø)
¡¡¡¡¡¡(°øĪ¿ë·®) Vnom = Cylinder £« Both Heads = 2728.0314 £« 1022.6539 = 3750.6853 (m©ø)
¡¡¡¡¡¡(ÀúÀå¿ë·®) Vsto = Cylinder £« Both Heads = 2514.9401 £« 973.9018 = 3488.8420 (m©ø)
¡¡¡¡¡¡( Ç¥¸éÀû ) AREA = ¥ð¡¿D©÷£« ¥ð¡¿D¡¿L = (Both Head: 490.874) £« (Cylinder: 872.97) = 1363.844 m©÷
¡¡¡¡
[Table 2] Strength Calculation
¡¡Vessel Size : 12500(D) ¡¿ 22230(TL) ¡¿ 34730(L) mm
¡¡Where, R = 0.5¡¿D= 6250.0 mm
o (³»¾Ð¿¡ ÀÇÇÑ ÇÊ¿äµÎ²²ÀÇ °è»ê) Required Thickness Calculation [Div.1]
¡¡Vessel Material : SA553-Type.1
¡¡Allowable Stress, S = 187.0 MPa, ASME SEC. II Part D, [TABLE 1A]
¡¡Total Pressure, P = Pi £« Ps = 0.5318 MPa ( Pi=0.4786 MPa, Ps=0.0532 MPa, Ps:Static Head )
¡¡Weld Joint Effciency, E = 1
¡¡Head Type : Hemi-Spherical Head
¡¡tHead_Btm = P¡¿R / ( 2SE - 0.2P ) £« CA(0.75) = 9.64 mm, ( tHead_Top=9.13 mm),
¡¡tCyl_Btm = P¡¿R / ( SE - 0.6P ) £« CA(0.75) = 18.55 mm, ( tCyl_Top=17.53 mm)
o (Àüü Ç¥¸éÀû) AREA = ¥ð¡¿D©÷£«¥ð¡¿D¡¿L = (Both Head: 490.874) £« (Cylinder: 872.97) = 1363.844 m©÷

o µÎ²² Check : , tDesign Thick. > Used Thick. NG. (»ç¿ëµÎ²²¸¦ Å°¿ì¼¼¿ä)
¡¡1) Both Head Weight = 61.654 Ton (Head Thick = 16.0 mm)
¡¡2) Cylinder Weight = 109.645 Ton (Cylinder Thick = 16.0 mm)
¡¡ ¡¡Assumed Total Weight = 171.299 Ton

o Design External Pressure of Hemi-spherical Head:

¡¡ Material : SA553-Type.1, Ro = Ri £« headThk - CA = 6265.25 mm, tc= 15.25 mm
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( Ro / tc ) = 0.00030426
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( 6265.25 / 15.25) = 0.00030426
¡¡ From ASME SEC. II Part D Fig. CS-3 Curve [Metric] B = 30.4258 MPa
¡¡ Allowable External Pressure Pa = B / ( Ro / tc ) = 0.07406 MPa
¡¡o Buckling Check of Head Plate, Pe(0.045) < Pa(0.0741) MPa. OK
   
1) Cylindrical Tank : 12500(D) ¡¿ 22230(TL) ¡¿ 28480(L) mm ASME VIII, Div. 1
No.DDLLzRrNominal CapacityStorage CapacityStorage
Ratio
Surface Area PiPsP=Pi£«Ps tHeadtShell
No.mmmmmm mmmm m©øm©ø(%)m©÷ MPaMPaMPammmm
012500108503125 11306.252159.3 3239.35843001.891192.6691211.70.47860.05320.531818.5318.55
Where,¡¡R = 0.9045¡¿D,¡¡r = 0.172744¡¿D,¡¡z = 0.25¡¿D,¡¡Vnom = (¥ð¡¿D©ø/12) £« (L¡¿¥ð¡¿D©÷/4) = 3239.3584 (m©ø)
¡¡¡¡¡¡(°øĪ¿ë·®) Vnom = Cylinder £« Both Heads = 2728.0314 £« 511.3269 = 3239.3584 (m©ø)
¡¡¡¡¡¡(ÀúÀå¿ë·®) Vsto = Cylinder £« Both Heads = 2514.9401 £« 486.9509 = 3001.8911 (m©ø)
¡¡¡¡¡¡( Ç¥¸éÀû ) AREA = 2¡¿1.083849¡¿D©÷£«¥ð¡¿D¡¿L = (Both Head: 338.703) £« (Cylinder: 872.97) = 1211.673 m©÷
¡¡¡¡¡¡( Ç¥¸éÀû °ø½Ä Ãâó : ÀϺ» ) ¹Ù·Î°¡±â
[Table 3] Strength Calculation
¡¡Vessel Size : 12500(D) ¡¿ 22230(TL) ¡¿ 28480(L) mm
¡¡Where, z = 0.25¡¿D= 3125.0 mm,¡¡ L = 0.9045¡¿D= 11306.3 mm,¡¡r =0.172744¡¿D= 2159.3 mm,¡¡C = 0.5
o (³»¾Ð¿¡ ÀÇÇÑ ÇÊ¿äµÎ²²ÀÇ °è»ê) Required Thickness Calculation [Div.1]
¡¡Vessel Material : SA553-Type.1
¡¡Allowable Stress, S = 187.0 MPa, ASME SEC. II Part D, [TABLE 1A]
¡¡Total Pressure, P = Pi £« Ps = 0.5318 MPa ( Pi=0.4786 MPa, Ps=0.0532 MPa, Ps:Static Head )
¡¡Weld Joint Effciency, E = 1
¡¡Head Type : 2:1 Ellipsoidal, [UG-32(c)] For t/R ¡Ã 0.002, tMin = 0.002¡¿R = 23.36 mm > 16.0 mm tUsed NG!
¡¡tHead_Btm = P¡¿D¡¿K / ( 2SE - 0.2P ) £« CA = 18.53 mm, ( tHead_Top=17.5 mm), K=1,
¡¡tCyl_Btm = P¡¿R / ( SE - 0.6P ) £« CA = 18.55 mm, ( tCyl_Top=17.53 mm)
o (Àüü Ç¥¸éÀû) AREA = 2¡¿1.083849¡¿D©÷£«¥ð¡¿D¡¿L = (Both Head: 338.703) £« (Cylinder: 872.97) = 1211.673 m©÷

o µÎ²² Check : , tDesign Thick. > Used Thick. NG. (»ç¿ëµÎ²²¸¦ Å°¿ì¼¼¿ä)
¡¡1) Both Head Weight = 42.541 Ton (Head Thick = 16.0 mm)
¡¡2) Cylinder Weight = 109.645 Ton (Cylinder Thick = 16.0 mm)
¡¡ ¡¡Assumed Total Weight = 152.186 Ton

o Design External Pressure of 2:1 Ellipsoidal-Head:

¡¡ Material : SA553-Type.1, Ro = 0.9¡¿D £« headThk-CA = 11265.25 mm, tc= 15.25 mm
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( 11265.25 / 15.25)
¡¡ Factor A for Spherical Shells or Head UG-28(d) Factor A = 0.125 / ( Ro / tc ) = 0.00016922
¡¡ From ASME SEC. II Part D Fig. CS-3 Curve [Metric] B = 16.9215 MPa
¡¡ Allowable External Pressure Pa = B / ( Ro / tc ) = 0.02291 MPa
¡¡o Buckling Check of Head Plate, Pe(0.045) > Pa(0.0229) MPa. NG
   
1) Cylindrical Tank : 12500(D) ¡¿ 22230(TL) ¡¿ 27074.36(L) mm ASME VIII, Div. 1
No.DDLLzLrNominal CapacityStorage CapacityStorage
Ratio
Surface Area PiPsP=Pi£«Ps tHeadtShell
No.mmmmmm mmmm m©øm©ø(%)m©÷ MPaMPaMPammmm
012500108502422.18 125001250 3114.61742883.096892.5671193.70.47860.05320.531828.1418.55
Where,¡¡L = 1.0¡¿D,¡¡r = 0.1¡¿D,¡¡z=0.193774¡¿D,¡¡C=0.3780223,¡¡Vnom = (2¡¿C¡¿¥ð¡¿D©ø/12) £« (L¡¿¥ð¡¿D©÷/4) = 3114.6174 (m©ø)
¡¡¡¡¡¡(°øĪ¿ë·®) Vnom = Cylinder £« Both Heads = 2728.0314 £« 386.5860 = 3114.6174 (m©ø)
¡¡¡¡¡¡(ÀúÀå¿ë·®) Vsto = Cylinder £« Both Heads = 2514.9401 £« 368.1566 = 2883.0968 (m©ø)
¡¡¡¡¡¡( Ç¥¸éÀû ) AREA = 2¡¿1.0264¡¿D©÷£«¥ð¡¿D¡¿L = (Both Head: 320.75) £« (Cylinder: 872.97) = 1193.72 m©÷
¡¡¡¡¡¡( Ç¥¸éÀû °ø½Ä Ãâó : ÀϺ» ) ¹Ù·Î°¡±â
[Table 4] Strength Calculation
¡¡Vessel Size : 12500(D) ¡¿ 22230(TL) ¡¿ 27074.36(L) mm
¡¡Where, z = 0.193774¡¿D= 2422.18 mm,¡¡ L = 1.0¡¿D= 12500.0 mm,¡¡r = 0.1¡¿D= 1250.0 mm, ¡¡C =0.3780223
o (³»¾Ð¿¡ ÀÇÇÑ ÇÊ¿äµÎ²²ÀÇ °è»ê) Required Thickness Calculation [Div.1]
¡¡Vessel Material : SA553-Type.1
¡¡Allowable Stress, S = 187.0 MPa, ASME SEC. II Part D, [TABLE 1A]
¡¡Total Pressure, P = Pi £« Ps = 0.5318 MPa ( Pi=0.4786 MPa, Ps=0.0532 MPa, Ps:Static Head )
¡¡Weld Joint Effciency, E = 1
¡¡Head Type : 10% Dish Head ( ASME SEC. VIII Div. Appendix 1.(d) for torispherical Head )
¡¡tHead = P¡¿L¡¿M / ( 2SE - 0.2P ) £« CA = 28.14 mm, ( tHead_Top=26.56 mm), L=1.0¡¿D=12500 mm, M=1/4¡¿[3£«(L/r)0.5] = 1.54057,
¡¡tCyl = P¡¿R / ( SE - 0.6P ) £« CA = 18.55 mm, ( tCyl_Top=17.53 mm)
o (Àüü Ç¥¸éÀû) AREA = 2.0528¡¿D©÷£«¥ð¡¿D¡¿L = (Both Head: 320.75) £« (Cylinder: 872.97) = 1193.72 m©÷

o µÎ²² Check : , tDesign Thick. > Used Thick. NG. (»ç¿ëµÎ²²¸¦ Å°¿ì¼¼¿ä)
¡¡1) Both Head Weight = 40.286 Ton (Head Thick = 16.0 mm)
¡¡2) Cylinder Weight = 109.645 Ton (Cylinder Thick = 16.0 mm)
¡¡ ¡¡Assumed Total Weight = 149.931 Ton
1
2
3
4
5
6
7
8
   
Material Selection for IMO TYPE "C" TANK Unit : MPa
MATERIALWeld Metal(¿ëÁ¢ºÀ°­µµ)Allowable Membrane Stress(f) ¼±±ÞKR/LR
Tensile
Rm (=St)
Yield
Re (=Sy)
Div.1
S
f = Min(Re/A, Rm/1.5) f (Mpa) A
A1106(Hign Mn) 660400 N/A f = Min(660/3.5, 400/1.5) 188.6 3.5
A553-TYPE1 640420187.0f = Min(640/3.0, 420/1.5) 213.3 3.0
LT-FH32 440~570315 N/A f = Min(440/3.0, 315/1.5) 146.67
LT-FH36-TM 490~630355 N/A f = Min(490/3.0, 355/1.5) 163.33
SA240-304 515205138f = Min(515/3.5, 205/1.5) 136.66 3.5
SA240-304L 485170115f = Min(485/3.5, 170/1.5) 113.33
SA240-316 515205138f = Min(515/3.5, 205/1.5) 136.66
SA240-316L 485170115f = Min(485/3.5, 170/1.5) 113.33
SA516-60 410215118ASME SEC. VIII Div.1
Allowable Stress
SA516-70 485260138
SA537-CL1 485345138
SA537-CL2 550415158
ASME SEC. VIII [Div. 1 WORK] ASME SEC. II PART D Table 1A [SI Unit] [CIS Calc]
No.MATERIALShell Allowbale Thick.Min. Tensile StrengthMin. Yield StrengthAllowable Stress

Sd (MPa)
Min. Yield Strength for Hydrostatic-TestExternal Pressure (CS-Chart No)..
t (mm)St (MPa)Sy (MPa)40¨¬C65¨¬C100¨¬C125¨¬CSyt (MPa)CS..
1SA516-55380205108184.5CS-1
2SA516-60415220118198CS-2
3SA516-65450240128216CS-2
4SA516-70485260138234CS-2
5SA537-CL1t ¡Â 64t485345138138138137310.5CS-4
6SA537-CL164 < t ¡Â 100450310128279CS-4
7SA537-CL2t ¡Â 64t550415158158158157373.5CS-4
8SA537-CL264 < t ¡Â 100515380148148147147342CS-4
9SA537-CL2100 < t ¡Â 150485315138138138137283.5CS-4
10SA36400250114225CS-2
11SA285-B¡Â50t34518598.6166.5CS-2
12SA285-C¡Â50t380205108184.5
13SA240-304G5515205138138137134184.5HA-1
14SA240-304LG5485170115153HA-3
15SA240-316G5515205138184.5HA-2
16SA240-316LG5485170115153HA-4
17SA553-TYPE1W5690585187187173169526.5CS-3
ASME SEC. VIII [Div. 2 - Class 2 WORK] ASME SEC. II PART D Table 5A [SI Unit]
No.MATERIALShell Allowbale Thick.Min. Tensile StrengthMin. Yield StrengthAllowable Stress

Sd (MPa)
Min. Yield Strength for Hydrostatic-TestExternal Pressure (CS-Chart No)..
t (mm)St (MPa)Sy (MPa)40¨¬C65¨¬C100¨¬C125¨¬CSyt (MPa)CS..
1SA516-55380205138130126124194.75
2SA516-60415220147138134132209
3SA516-65450240161151147144228
4SA516-70485260175164159157247
5SA537-CL1t ¡Â 64t485345201327.75
6SA537-CL164 < t ¡Â 100450310187187181174294.5
7SA537-CL2t ¡Â 64t550415230394.25
8SA537-CL264 < t ¡Â 100515380215361
9SA537-CL2100 < t ¡Â 150485315201196185178299.25
10SA36400250165156151148237.5
11SA285-Bt ¡Â 50t345185124117113111175.75
12SA285-Ct ¡Â 50t380205138130126124194.75
13SA240-304515205138194.75
14SA240-304L485170115161.5
15SA240-316515205138194.75
16SA240-316L485170115161.5
17SA553-TYPE1t ¡Â 150690585273555.75W4

SHELL BUCKLING CHECK [GL RULES]
Ãâó : ASME External Pressure, ¸µÅ© : Design https://www.pveng.com/home/asme-code-design/external-pressure-methods/
2 Designing for External Pressure
The easiest way to design for external pressure is to make the shell thick enough to make the vessel stable with an acceptable factor of
safety (pass code calculations). The length of the vessel used in the calculations includes some of the head at each end.
The calculations are found in ASME VIII-1 UG-28. The shell calculations are for a cylinder with supported ends
(the heads at each end). Calculations are also given for the heads which are treated as spheres.


Data Input :
Ãâó : Germanischer Lloyd (GL) RULE, External Pressure, ¸µÅ© : (Å©·Î¾ÆƼ¾Æ) BILOBE_½Ç¸°´õ_°è»ê_³í¹®_620084.Senjanovic_Structure_design.pdf
Ãâó : Germanischer Lloyd (GL) RULE, External Pressure, ¸µÅ© : 003_STRUCTURE DESIGN OF CARGO TANKS IN RIVER LIQUEFIED GAS CARRIERS¡¡ds36_126.pdf
Head Type headType =
Design External Pressure Pe =0.45barFull Vacuum F.V= 1.01325 bar
Outside diameter ( Cylinder ) Da =4730mm
(Assumed) Shell Plate Thickness t =13.08mm
Allowance for corrosion and wear c =0mm
Vacuum Ring pitch(§¤), Or Length of shell(L) §¤ =3722mm
Modulus of elasticity at design temperature Et =206000N/mm©÷SA203-304(L), SA203-316(L) : 193,000 N/mm©÷,
Carbon and 9% Nickel : 206,000 N/mm©÷,
High Mn. : 175,000 N/mm©÷
Poisson's ratio ¥ô =0.3
integral number of waves; nw = 1.63 * [(Da/§¤)2 * Da/tc]0.25
where, n > 2 and n > z
nw =8.01DNV-GL 7.1.3 91ÂÊ
z = 3.141592 * Da / ( 2*§¤ ) z =1.9962
Shell Thick. to Out-Diameter Ratio (t-c) / Da =0.0027643
Safety factor against elastic buckling, Sk = 3 + [0.002 / (tc/R)] Sk =3.3618
Vacuum Ring Size, Ex)H400x200x20x10 OR H400x20+300x10SIZE =ex) T400x20+200x10 or FB100x6
  SUBMIT


3. ASME SEC. VIII Div. 1 ¼³°è¿Ü¾Ð¿¡ ÀÇÇÑ Vacuum Ring ½Ã¹Ä·¹À̼Ç
¡¡[Alternate] Design External Pressure Check by ABS (ASME SEC.VIII Division 1 Rule )
1. Hemi-Spherical Head : MATL =SA553-Type.1
Design External Pressure Pe =0.045 MPa
Elastic modulusEt = 206000MPa
Hemi-Spherical Head Long Radius, Ro = Do / 2 Ro = 2365.0 mm
Head Plate Thickness, th =16.0 mm
Corrosion Allowance CA = 0.0 mm
Corroded Thickness t = th-CA 16.0 mm
Factor A for Head plate A = 0.125 / ( Ro / tc)FACTOR A = 0.0008457
Factor B from ASME SEC. II Part D Fig. CS-3 Curve [Metric] FACTOR B = 84.56660 MPa
[UG£­28 ]Step 4.] Allowable External Pressure, Pa =
B
(Ro/t)
Pa =0.57212
572.12
MPa
kPa
Buckling Check of Cylinder Shell Plate, Pe(0.045) < Pa(0.57212) MPaOK
2. Shell plate : MATL =SA553-Type.1
Design External Pressure, Pe =0.045 MPa
Elastic modulusEt = 206000MPa
Outside Diameter Do = 4730.0 mm
Stiffener pitch L = 3722.0 mm
Recommend Stiffener pitch (̵̧ Picth by Bob-LONG for API 620 Tank)Ls = 11409.1 mm
(Assumed) Shell Plate Thicknessts =13.075 mm
Corrosion Allowance CA = 0.0 mm
Corroded Thickness t = ts-CA13.075 mm
Stiffener pitch to Diameter Ratio, L/Do > 0.055, OK! [Step 1 from FIG. G]L / Do = 0.7869Ref. FIG. G
Out-Diameter to thickness ratio, Do/tc < 1000, OK! [Step 2 from FIG. G]Do / t = 361.7591Ref. FIG. G
Factor A for Cylinderical Shells form ASME SEC II, Part D, FIG-G. FACTOR A = 0.0002550Ref. FIG. G
Factor B from ASME SEC. II Part D Fig. CS-3 Curve [Metric] FACTOR B = 25.49597 MPa
[UG£­28 (c) Step 6] Allowable External Pressure, Pa =
4 · B
3 · (Do/t)
Pa =0.09397
93.97
MPa
kPa
Buckling Check of Cylinder Shell Plate, ASME VIII, Div 1Pe(0.045) < Pa(0.09397) MPa
Pe(0.45) < Pa(0.9397) bar.g
OK
[¹Ì±¹ ¼ö¼Ò¹ý CGA_H3] Pc = [2.6¡¿Et¡¿(tc/Da)2.5] / [(L/Da) - 0.45¡¿(tc/Da)0.5]Pc =0.2819MPa
[minL ¿ª°è»ê] minL = [(2.6¡¿Et¡¿(tc/Da)2.5) / Pc + 0.45¡¿(tc/Da)0.5] ¡¿ DminL =3722mm
Buckling Check of Cylinder Shell Plate, by CGA H-3 Rules
Pe = Safety Factor 2 ⋅ F/V = 2.0265 bar.g
Pe(0.2027) < Pc(0.2819) MPa
Pe(2.027) < Pc(2.819) bar.g
OK
3. Stiffener Ring ( Vacuum Ring ) : MATL =SA553-Type.1
Stiffener Ring Size Size =T400x20+200x10
Section Area of Stiffener Ring As =98 cm©÷
¡¡[UG-29 Step 1.] B = 3/4 ⋅ Pe ⋅ Do / (t+As/Ls) B = 10.1628 MPa
¡¡[UG-29 Step 5.] A = 2 ⋅ B / Et A = 0.0000987
¡¡[UG-29(a)] Required moment of inertia of the combined ring-shell cross section
¡¡¡¡¡¡¡¡ ¡¡Is' = Do©÷ ⋅ Ls(t+As/Ls) ⋅ A / 10.9 ⋅ [mm4]
¡¡¡¡¡¡¡¡ ¡¡Is' = 4730©÷ ⋅ 3722 ⋅ (13.075+9800/3722) ⋅ 0.0000987 / 10.9 [mm4]
Is' = 1184.05cm©ù
¡¡[UG-29(a)] available moment of inertia of combined ring-shell cross section
¡¡¡¡¡¡¡¡ ¡¡¡¡¡¡¡¡ See. Bellow Table
I' = 34554.58cm©ù
¡¡Check of inertia cross section, Is' / I' < 1.0 OK Is' / I' =0.0343 < 1.0 OK
Available moment of inertia calculation (I') : ¡¡¡¡¡¡¡¡Stiffener Size : T400x20+200x10
No.bdA=b ⋅ dyA ⋅ yh = y-C1Ah©÷Ig=b ⋅ d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
320.01.020.041.025820.523.5811125.041.67
22.039.078.021.0251639.953.581002.479886.5
Shell29.541.52545.050.762534.35-16.6812530.168.73
SUM¢² = 143.05 2494.8 24657.689896.9
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 17.44cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 24.085cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=143.05cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =34554.58cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =1434.69cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 1981.34cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 15.54cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 5.27cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 143.05cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 98cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.23mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 76.93kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 479.2kgRing 1 PCS Áß·®(kg)

4. ASME SEC. VIII Div. 2 ¼³°è¿Ü¾Ð¿¡ ÀÇÇÑ Vacuum Ring ½Ã¹Ä·¹À̼Ç
¡¡[Alternate] Design External Pressure Check by ABS (ASME SEC.VIII Division 2 Rule )
A. Spherical Shell or Hemi-Head Required Thickness: Div.2 EQ.4.4.2, EQ.4.4.7
1. Spherical Shell or Hemi-Spherical Head : MATL =SA553-Type.1
Design External Pressure, Pe =0.045 MPa
Elastic modulusEt = 206000MPa
Minimum Specified Yield Strength at Design Temperature(80¡É) Sy =400.0 MPa
Hemi-Spherical Head Long Radius, Ro = Do / 2 Ro = 2365.0 mm
Head Plate Nominal Thickness, th =16.0 mm
Head Plate Corrosion Allowance CA = 0.0 mm
Head Plate Corroded Thickness t = th-CA 16.0 mm
Predicted Elastic buckling stress, Fhe = 0.075 ¡¿ Ey ¡¿ [tc / Ro]¡¡(Eqn. 4.4.53)Fhe =104.52 MPa
Safety Factor¡¡¡¡ If Fic ¡Â 0.55¡¿Sy then FS = 2.0 Eqn. 4.4.1)FS = 2.000
If Fhe¡¡¡Â 0.55¡¿Sy then Fha = Fhe / FS (Eqn. 4.4.57)Fha =52.26 MPa
Allowable External Pressure, Pa = FS ¡¿ Fha ¡¿ [t / Ro]¡¡¡¡¡¡¡¡(Eqn. 4.4.58)Pa =0.70714 MPa
Req'd Min. Head plate thickness for Ext. Pressure Tmin_EP = Ro ¡¿ Pe / (FS ¡¿ Fha) + CATmin_EP =1.02 mm
Check : Pe ¡Â Pa   OK,     Tmin_EP ¡Â t Pe ¡Â PaO.K
B. For Cylindrical Shell Required Thickness :
No.t
mm
Do
mm
Fhe
MPa
MxChFic
MPa
AeFSFha
MPa
Pe
Mpa
< Pa OK
MPa
110.0473039.815615.46840.061839.815640.000193282.000019.90780.045 < 0.0779   OK
Sy =400.0 MPa, ttc =9.25 mm, Ro =2365.0 mm, Do =4730.0 mm, Do/t= 511.35 < 2000 OK,
Mx=[15.4684], Ch=[0.0618], Fhe=[39.8156], Fic=[39.8156], FS=[2.0]
Pe(0.045 MPa) < Pa_div2=[0.0779] Mpa , Pa_div2=[0.779] bar.g, OK
ASME SEC. VIII Div. 2 Examples : [ÆÄÀÏ : (SB-Q21-0618_0628) ¼±º¸°ø¾÷_2nd_°ßÀû_°­µµ°è»ê.xlsx]

1. Check by DNV-GL RULES, (¼³°è¿Ü¾Ð¿¡ ÀÇÇÑ Vacuum Ring ½Ã¹Ä·¹À̼Ç)       ¾Æ·¡ Formula º¯Ãµ»ç Ãâó
Case A ) Áß¿ä : Safety Fctor Sk = 4, Max( 4, 3 + [ 0.002 / (t-c / R) ] )
nGL Rules
Pcr_GL (bar.g)

Sk = 3.3618
DNV-GL RULES
Pcr_DNV (bar.g)

when, Sk = 4.0
Remark
4 9.1795 7.7148
5 2.9590 2.4869
6 1.3600 1.1430
7 0.9233 0.7760
80.8525
(Sk = 3.3618)
0.7165 ( Sk = 4.0 )
Minimum Pcr( critical pressure ) bar.g
9 0.9231 0.7758
10 1.0612 0.8919
11 1.2393 1.0416
12 1.4463 1.2156
13 1.6773 1.4096
14 1.9297 1.6218
15 2.2026 1.8512
16 2.4953 2.0972
17 2.8074 2.3595
18 3.1388 2.6380
19 3.4893 2.9326
20 3.8589 3.2432
21 4.2476 3.5698
22 4.6552 3.9124
23 5.0819 4.2710
24 5.5275 4.6455
25 5.9921 5.0360
26 6.4757 5.4425
Where,
  Shell plate Material : SA553-Type.1
  Vacuum Ring Pitch, L = [3722.0] mm,
  Buckling Coefficient, z = 3.141592 * Da / ( 2 * L ) = 1.9962
  The critical pressure is found by an iteration process over the range n, where n > z.
  Buckling Safety factor, Sk = 3 + (0.002/(tc/Ro)) = 3.36176
  n = 8 - number of buckled folds occurring round the periphery in the event of failure, which give minimum pcr value.
  Pcr = 0.8525 bar.g, Minimum Pcr value.
Evaluation : (Æò°¡°á°ú)
¡¡1. Design External Pressure : 0.45(bar) < Cretical External Pressure 0.8525(bar) À̹ǷΠ[¾ÈÀü]ÇÕ´Ï´Ù.
¡¡2. ¾ÈÀüÀ² [Pe/Pcr = 0.5278] ·Î½á OVER DESIGN »óÅÂÀ̹ǷΠShell µÎ²²¸¦ ÀûÁ¤µÎ²²·Î ÁÙÀ̽ñ⸦ Ãßõ ÇÕ´Ï´Ù.

2. Check by DNV-GL vs. ABS Rules (ASME SEC. VIII Div.1 ¼³°è¿Ü¾Ð¿¡ ÀÇÇÑ Vacuum Ring ½Ã¹Ä·¹À̼Ç
Case B ) Áß¿ä : Safety Fctor Sk = 3 + [0.002 / (t-c / R) ]
DNV-GL
when, Sk = 3 + [0.002 / (t-c / R)
ABS Rules = ASME SEC. VIII Division 1
Do/t = 361.76 < 1000 ÀÌÇÏ OK, L/Do = 0.78689, CA = 0 mm
t(mm) SknzPcr (bar) t(mm) Do / tcFactor AFactor BPa (bar)Pcr/Pa
103.47318.4280.4199310473.0000.0001667616.6760.47010.8933
10.53.4504817.9840.4779710.5450.4760.0001802918.0290.53360.8957
Where,
  Shell Material : SA553-Type.1, Vacuum Ring Pitch L = [3722.0] mm,
  n = 18
, number of buckled folds occurring round the periphery in the event of failure, which give minimum pcr value.
  Pcr = 0.8525 bar.g, Minimum Pcr value.
Evaluation : (Æò°¡°á°ú)
¡¡1. Shell µÎ²² 10.5 (mm) ÀÏ °æ¿ì,
¡¡¡¡ Design External Pressure : 0.45(bar) < Cretical External Pressure 0.4780(bar) À̹ǷΠ[¾ÈÀü]ÇÕ´Ï´Ù.
¡¡2. ¾ÈÀüÀ² [Pe/Pcr = 0.9415] ·Î½á OVER DESIGN »óÅÂÀ̹ǷΠShell µÎ²²¸¦ ÀûÁ¤µÎ²²·Î ÁÙÀ̽ñ⸦ Ãßõ ÇÕ´Ï´Ù.

ÇÊ¿äÇÑ ´Ü¸é 2Â÷ ¸ð¸àÆ® ( DNV-GL Rules)

DNVGL-RU-SHIP-Pt5Ch7 (2017) Liquefied gas tankers.pdf Pt5. Ch.7 Secction 22
2.4.1 2.4 Scantling due to external pressure

2.4.4 Stiffening rings
The requirements for scantling of stiffening rings are given in terms of minimum moment of inertia for the member, in mm©ù.

Ix = 0.18 * 4730 * 0.045 * 3722 * 4730©÷/ 206000 = 1.5487367E7 mm©ù= 1548.74 cm©ù

Where :
Ds = diameter to the neutral axis of stiffener in mm
Ped = external design pressure in MPa defined in [1.2.4].
Ls = 0.75 * SQRT(D*t)
The length of the shell in mm contributing to the moment of inertia is limited by
Stiffening rings shall extent completely around the circumference of the shell.

2.4.2) Hemi-Spherical Head for Allowable Compressive Stress
Ãâó : 002_IMO CÇü µ¶¸³ÅÊÅ©ÀÇ ¼³°èÄ¡¼ö °è»ê°úÁ¤ ¹× Æò°¡¹æ¹ý¿¡ ´ëÇÑ °íÂû 7 ÂÊ Consideration for IMO Type C Independent Tank Rule Scantling Process and Evaluation Methods-1.pdf

The spherical shell shall be checked so that elastic instability or membrane yield does not occur.
The allowable design pressure shall be complied with the requirement in [2.8.2].
calculation of elastic instability
The pressure Pc, in bar.g, corresponding to elastic instability of a head plate,
shall be determined from the following formula:
Pc = 2.4 * E * [ (tHead-CA) /R ]©÷  = 2.4 * 206000.0 * [(16.0 - 0.75) / 2365]©÷  = 20.557 bar.g
Py = 20 * Fy * [(tHead-CA) / R ]   = 20 * 400.0 * (16.0 - 0.75) / 2365)   = 51.586 bar.g
Acceptance criteria for Head Plate :
¡¡Pe(0.45) < Min(Pc / 3, Py/3 ) then OK
¡¡Pe(0.45) < Min( 20.557/3, ¡¡51.586/3 ) then OK
¡¡Pe(0.45) < Min( 6.852, ¡¡17.195 ) then OK

Ãâó : (Å©·Î¾ÆƼ¾Æ) BILOBE_½Ç¸°´õ_°è»ê_³í¹®_620084.Senjanovic_Structure_design.pdf

8. SHELL BUCKLING ANALYSIS
8.1. CYLINDRICAL SHELL
    In the case of a large external pressure a segment of
    the cylindrical tank shell between the two vacuum rings
    may lose stability. According to the GL Rules the critical
    pressure for elastic buckling of a cylindrical shell is determined
    by the following formula [5]


Ãâó : 003_STRUCTURE DESIGN OF CARGO TANKS IN RIVER LIQUEFIED GAS CARRIERS¡¡ds36_126.pdf
4. Shell Buckling
4.1 Cylindrical shell
    In the case of external pressure a segment of the cylindrical tank shell between the two vacuum rings
    may lose stability. According to the GL Rules the critical pressure for elastic buckling of a cylindrical
    shell is determined by the following formula [Rules GL 2000]:


Ãâó DNV_GL : DNVGL-RU-SHIP-Pt4Ch7.pdf 91 ÂÊ
Stiffener Size : T400x20+200x10¡¡¡¡¡¡¡¡Shell Section : t9 x 230 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
320.01.020.040.425808.520.218167.271.67
22.039.078.020.4251593.150.213.379886.5
Shell23.010.92521.280.46259.84-19.758304.311.52
SUM¢² = 119.28 2411.49 16474.959889.68
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 20.217cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 20.708cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=119.28cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =26364.64cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =1273.16cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 1304.08cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 14.87cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 3.7cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 119.28cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 98cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.22mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 76.93kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 478.5kgRing 1 PCS Áß·®(kg)

Stiffener Size : FB 300x10¡¡¡¡¡¡¡¡Shell Section : t10 x 200 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
21.030.030.016.04806.21153.22250
120.01.020.00.510-9.31729.81.67
SUM¢² = 50 490 28832251.67
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 9.8cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 21.2cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=50.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =5134.67cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =242.2cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 523.95cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 10.13cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 3.66cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 50cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 30cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.25mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 23.55kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 147.2kgRing 1 PCS Áß·®(kg)

Stiffener Size : T 400x20+150x10¡¡¡¡¡¡¡¡Shell Section : t15 x 200 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
315.01.015.041.061522.57593.751.25
22.039.078.021.016382.5487.59886.5
Shell20.01.530.00.7522.5-17.759451.885.63
SUM¢² = 123 2275.5 17533.139893.38
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 18.5cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 23.0cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=123.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =27426.5cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =1192.46cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 1482.51cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 14.93cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 3.26cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 123cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 93cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.23mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 73.01kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 454.5kgRing 1 PCS Áß·®(kg)

Stiffener Size : H 200 * 20 + 100 x 10¡¡¡¡¡¡¡¡Shell Section : t20 x 150 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
310.02.020.022.044013.473626.666.67
21.017.017.012.5212.53.97267.4409.42
110.02.020.03.060-5.53612.56.67
Shell15.02.030.01.030-7.531702.8310
SUM¢² = 87 742.5 6209.4432.75
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 8.534cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 14.466cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=87.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =6642.15cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =459.16cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 778.32cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 8.74cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 3.21cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 87cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 57cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.26mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 44.75kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 279.9kgRing 1 PCS Áß·®(kg)

Stiffener Size : HB 400x200x20/10¡¡¡¡¡¡¡¡Shell Section : t25 x 300 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
320.02.040.042.517002831351.0413.33
21.037.037.023.08518.52670.734221.08
120.02.040.03.5140-114843.5213.33
Shell30.02.575.01.2593.75-13.2513175.1439.06
SUM¢² = 192 2784.75 52040.434286.81
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 14.504cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 28.996cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=192.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =56327.25cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =1942.59cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 3883.57cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 17.13cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 6.57cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 192cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 117cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.24mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 91.85kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 572.9kgRing 1 PCS Áß·®(kg)

Stiffener Size : H 500x200x20/10¡¡¡¡¡¡¡¡Shell Section : t30 x 400 mm
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
320.02.040.053.0212037.6256601.5513.33
21.047.047.028.51339.513.128086.628651.92
120.02.040.04.0160-11.385182.9113.33
Shell40.03.0120.01.5180-13.8823128.5290
SUM¢² = 247 3799.5 92999.68768.58
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 15.383cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 38.617cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=247.00cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =101,768cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =2635.32cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 6615.63cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 20.3cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 8.69cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 247cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 127cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.23mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 99.7kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 621.6kgRing 1 PCS Áß·®(kg)

double GET_I( 0.5, 9.86, 0.5, 6.0, 0.5, 4.0, 0,0 ) = [28.8025] cm©ù
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
mmmmmm©÷mmmm©ø(mm)mm©ùmm©ù
20.56.03.03.510.52.0212.2419
19.860.54.930.251.233-1.237.4590.103
SUM¢² = 7.93 11.733 19.79.103
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 1.48mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 5.02mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=7.93mm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =28.803mm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =5.738mm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 19.461mm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 1.906mm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 2.246mm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 7.93mm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 3mm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.28mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 0kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 0kgRing 1 PCS Áß·®(kg)

double GET_I( 0.5, 9.86, 0.5, 6.0, 0.5, 4.0, 0,0 ) = [73.2108] cm©ù
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
mmmmmm©÷mmmm©ø(mm)mm©ùmm©ù
34.00.52.06.7513.54.20935.4310.042
20.56.03.03.510.50.9592.7599
Shell9.860.54.930.251.233-2.29125.8760.103
SUM¢² = 9.93 25.233 64.0669.144
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 2.541mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 4.459mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=9.93mm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =73.211mm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =16.419mm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 28.812mm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 2.715mm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 2.073mm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 9.93mm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 5mm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.28mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 0kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 0kgRing 1 PCS Áß·®(kg)

double GET_I( 0.5, 9.86, 0.5, 6.0, 0.5, 4.0, 0,0 ) = [103.7471] cm©ù
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
mmmmmm©÷mmmm©ø(mm)mm©ùmm©ù
34.00.52.07.2514.55.30656.3070.042
20.56.03.04.0122.05612.6819
19.860.54.930.753.698-1.1947.0280.103
Shell12.860.56.430.251.608-1.69418.4520.134
SUM¢² = 16.36 31.805 94.4699.278
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 1.944mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 5.556mm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=16.36mm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =103.747mm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =18.673mm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 53.368mm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 2.518mm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 2.833mm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 16.36mm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 9.93mm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.28mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 0kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 0kgRing 1 PCS Áß·®(kg)


Pressure Vessel ÇÚµåºÏ(95ÂÊ) º¸°­¸µÀÇ °ü¼º¸ð¸àÆ®(I) °è»ê½Ä º¸±â ¿¬½À¹®Á¦
SIZE : [T 60x5+40x5] Shell Size(t1 x w1) = [t5.0 x 98.6 mm]
No.bdA=b*dyA*yh = y-C1Ah©÷Ig=b*d©ø/12SKETCH
cmcmcm©÷cmcm©ø(cm)cm©ùcm©ù
20.56.03.03.510.52.0212.249
19.860.54.930.251.23-1.237.460.1
SUM¢² = 7.93 11.73 19.79.1
C1 = ¢²(AY) / ¢²(A) (¹«°ÔÁ᫐ À§Ä¡) C1 = 1.48cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE ÇÏ´Ü ±îÁö ¶³¾îÁø °Å¸®
C2 = H - C1 C2 = 5.02cm ¹«°ÔÁ߽ɿ¡¼­ FLANGE »ó´Ü ±îÁö ¶³¾îÁø °Å¸®
¢²(A) = Sum of Section Area (´Ü¸éÀû) ¢²(A)=7.93cm©÷ ´Ü¸éÀû (ºø±ÝÀüü)
Ix = ¢²(Ah©÷) + ¢²(Ig)Ix =28.8cm©ùXÃà ´Ü¸é2Â÷¸ð¸àÆ® (Moment of inertia)
Zx = Ix / Max(C1, C2) Zx =5.74cm©øXÃà ´Ü¸é°è¼ö (Section Modulus)
Zmax = Ix / Min(C1, C2) Zmax = 19.46cm©øXÃà (ÃÖ´ë) ´Ü¸é°è¼ö
Rx = SQRT( Ix / A ) Rx = 1.91cm XÃà ȸÀü¹Ý°æ
Ry = SQRT( Iy / A ) Ry = 2.25cm YÃà ȸÀü¹Ý°æ
Section Area(Shell Æ÷ÇÔ)Sarea = 7.93cm©÷ Section Area(Shell Æ÷ÇÔ)
Ring ´Ü¸éÀû (Shell Á¦¿Ü)ARing = 3cm©÷ Ring ´Ü¸éÀû (Shell Á¦¿Ü)
Ring ¿øÁÖ±æÀÌ Leng = 6.28mRing ±æÀÌ(m) = 3.141592¡¿(Di-C1)
Ring ´ÜÀ§Áß·® (kg/m), WTm = 2.36kg/m´ÜÀ§Áß·®(kg/m)
Ring Weight, Shell(1) Á¦¿Ü Áß·®WT = 14.8kgRing 1 PCS Áß·®(kg)


Dynamic Pressure Calculation

(IGC 4.28.2.1) The following formulae are given as guidance for the components of acceleration
due to ship's motions corresponding to a probability level of 10-8 in the North Atlantic
and apply to ships with a length exceeding 50 m and at or near their service speed:
¥ñ = maximum liquefied gas fuel density (kg/m©ø) at the design temperature.
Design parameter of ship motion :
Lo = length of the ship for determination of scantlings as defined in
¡¡¡¡¡¡recognized standards (m); ¼±¹ÚÀÇ ÃÖ´ë ±æÀÌ
Lo =132.0 m
B = greatest moulded breadth of the ship (m); ¼±¹ÚÀÇ ÃÖ´ë Æø
B =23.0 m
x = longitudinal distance (m) from amidships to the centre of gravity of
¡¡¡¡¡¡the tank with contents; x is positive forward of amidships, negative
¡¡¡¡¡¡aft of amidships;
¼±¹ÚÀÇ Áß¾Ó ¿¡¼­ Tank ÀÇ Á߽ɱîÁö °Å¸®, ¼±¼ö¹æÇâÀ» Á¤(+), ¼±¹Ì¹æÇâÀ» ºÎ(-)
x =-50.0 m
y = transverse distance (m) from centreline to the centre of gravity of
¡¡¡¡¡¡the tank with contents;
¼±¹ÚÀÇ È¾¹æÇâ Áß¾Ó¿¡¼­ Tank ÀÇ Á߽ɱîÁö ¶³¾îÁø °Å¸®
y =0.0 m
z = vertical distance (m) from the ship's actual waterline to the centre
¡¡¡¡¡¡of gravity of tank with contents; z is positive above and negative
¡¡¡¡¡¡below the waterline;
¼±¹ÚÀÇ Èê¼ö¼±¿¡¼­ Tank ÀÇ Á߽ɱîÁö ³ôÀÌ, Ȧ¼ö¼±»óÀ¸·ÎºÎÅÍ »óÀ» Á¤(+), Çϸ¦ ºÎ(-)
z =7.0 m
CB = block coefficient; [help]CB =0.787
K = 1 in general. For particular loading conditions and hull forms,
¡¡¡¡¡¡determination of K according to the following formula may be necessary;
¡¡¡¡¡¡K = 13*GM/B, where K ¡Ã 1 and GM = metacentric height, GM = 1 (m);
K =1.9
A =0.652
V = service speed (knots); V =12.0 knots
Acceleration due to ship's motions :
¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
az =0.7190 g¡¡ ¡¡ ¡¡ 
ay =0.8977 g
ax =0.2452 g
a0 =0.4320 g

1. Design Data
DescriptionSymbolCylinderBI-LOBEUnit
Tank Dia.D =7100mm
Design Liquiod levelDLL =7100mm
Radius of tankR =3550mm
Tank center to Swash Bulk Head (For Bilobe) C =00mm
Dimension x, (Tank T.L to T.L)x =23000mm
Dimension yy =0mm
Dimension z, z = DLL - Rz =3550mm
Tank Total LengthL=2R+x30100mm
2. Internal liquid pressure calculation [ as per IGC CODE]
Design Internal pressure ( Design Data )Po = 4.5bar.g
MARVS ( Design Data )MARVS = 4.5bar.g
Internal liquid pressure ( Calculated IGC CODE )
¡¡¡¡ Pgd(max) = Max(Pgd_x, Pgd_y)
Pgd(max) =0.7248bar.g
Total Design Pressure : Peq = Po + (Pgd)maxPeq =5.2248bar.g
DescriptionSymbolY-Z planeX-Z planeUnit
¡¡Pgd : Internal liquid pressure ( IGC 4.28.1.2 )
¡¡¡¡¡¡¡¡Pgd = a¥â ¡¤ Z¥â ¡¤ ( ¥ñ / 10-4 ) [bar.g]
Pgd = 0.59830.7248bar.g
¡¡ ¥ñ : Design Density of LNG¥ñ =500500kg/m©ø
¡¡a¥â : dimensionless acceleration, resulting from gravitational
¡¡¡¡¡¡¡¡¡¡and dynamic loads in an arbitrary direction ¥â
a¥â =1.71901.4931g
¡¡Z¥â : largest liquid height (m) above the point where the pressure is to be determined
¡¡¡¡¡¡¡¡¡¡measured from the Tank shell in the ¥â direction
Z¥â =7.1009.903m
¡¡¥â : angles of resulting acceleration vector in relative to the vertical plane ¥â =07deg.
¡¡¥âmax : maximum angle (Full Loading Condition) ¥âmax =52.25319.433deg.
¡¡¥â = ¥âmax(FWD) : Maximum angle (Collision Crash Stop), ax = 0.5g
¡¡¥â = ¥âmax(AFD) : Maximum angle (Collision Crash Stop), ax = -0.25g
¥âmax =26.565
14.036
deg.
deg.

3.1 Dynamic Pressure Calculation Result (Max. Accelation and Max. Pgd(Max)
Sloshing Load Calculation
(Full loading)
Collision Crash Stop(FWD)
ax = 0.5g
Collision Crash Stop(AFD)
ax =£­0.25g
Transverse
(y-z plane)
Longitudinal
(x-z plane)
Longitudinal
(x-z plane)
Longitudinal
(x-z plane)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
01.71907.10000.598371.49319.90300.724826.5651.118017.38590.952814.0361.030812.67820.6406
3.2 Dynamic Pressure Calculation by Each Angle
Sloshing Load Calculation
(Full loading)
Collision Crash Stop(FWD)
ax = 0.5g
Collision Crash Stop(AFD)
ax =£­0.25g
(Ãø¸é) Transverse
(y-z plane)
(±æÀÌ) Longitudinal
(x-z plane)
(±æÀÌ) Longitudinal
(x-z plane)
(±æÀÌ) Longitudinal
(x-z plane)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
¥â
(deg)
a¥â
(g)
Z¥â
(m)
Pgd
(bar.g)
01.71907.1000.598301.71907.1000.598301.00007.1000.348001.00007.1000.3480
11.71897.1000.598211.71397.5010.630211.00027.5010.367811.00027.5010.3678
21.71847.1000.598121.69877.9030.658121.00067.9030.387621.00067.9030.3876
31.71777.1000.597831.67388.3040.681331.00148.3040.407631.00148.3040.4076
41.71687.1000.597541.63998.7040.699741.00248.7040.427741.00248.7040.4277
51.71557.1000.597151.59799.1050.713151.00389.1050.448051.00389.1050.4480
61.71397.1000.596561.54869.5040.721561.00559.5040.468561.00559.5040.4685
71.71217.1000.595971.49319.9030.724871.00759.9030.489171.00759.9030.4891
81.70997.1000.595181.432510.3010.723381.009810.3010.509981.009810.3010.5099
91.70757.1000.594391.367910.6980.717391.012510.6980.531091.012510.6980.5310
101.70477.1000.5933101.300211.0940.7071101.015411.0940.5522101.015411.0940.5522
111.70167.1000.5922111.230311.4890.6929111.018711.4890.5737111.018711.4890.5737
121.69827.1000.5910121.158811.8820.6749121.022311.8820.5954121.022311.8820.5954
131.69447.1000.5897131.086412.2740.6536131.026312.2740.6175131.026312.2740.6175
141.69017.1000.5882141.010612.6780.6281141.030812.6780.640614.0361.030812.6780.6406
151.68587.1000.5867150.939513.0530.6011151.035313.0530.6624
161.68097.1000.5850160.864713.4400.5697161.040313.4400.6854
171.67577.1000.5832170.787813.8240.5339171.045713.8240.7086
181.67007.1000.5812180.705614.2070.4914181.051514.2070.7323
191.66407.1000.579119.4330.605814.5880.4332191.057614.5880.7563
201.65757.1000.5769 201.064214.9660.7808
211.65057.1000.5744 211.071115.3420.8056
221.64307.1000.5718 221.078515.7160.8309
231.63517.1000.5691 231.086416.0870.8567
241.62667.1000.5661 241.094616.4550.8829
251.61767.1000.5630 251.103416.8200.9098
261.60237.1000.5577 26.5651.118017.3860.9528
271.59777.1000.5561
281.58697.1000.5523
291.57547.1000.5483
301.56317.1000.5440
311.55017.1000.5395
321.53647.1000.5347
331.52177.1000.5296
341.50627.1000.5242
351.48987.1000.5185
361.47237.1000.5124
371.45387.1000.5060
381.43417.1000.4991
391.41317.1000.4918
401.39087.1000.4841
411.36707.1000.4758
421.34167.1000.4669
431.31447.1000.4575
441.28517.1000.4473
451.25367.1000.4363
461.21947.1000.4244
471.18207.1000.4114
481.14067.1000.3970
491.09397.1000.3807
501.03977.1000.3619
510.97257.1000.3385
52.2530.86847.1000.3022

3. Tank ¿ë·®º° Dia. ºñ±³Ç¥
±¸ºÐHemi-Spherical Vessel2:1 Ellipsoidal Head Vessel 10% Dish-Head Vessel
R = 0.5¡¿D,¡¡¡¡Vnom = ¥ð¡¿[(D©ø/ 6) £« (D©÷¡¿ L / 4)] R = 0.9045¡¿D,¡¡r = 0.172744¡¿D,¡¡z = 0.25¡¿D,¡¡Vnom = (¥ð¡¿D©ø/12) £« (L¡¿¥ð¡¿D©÷/4)L = 1.0¡¿D,¡¡r = 0.1¡¿D,¡¡z=0.193774¡¿D,¡¡C=0.3780223,¡¡Vnom = (2¡¿C¡¿¥ð¡¿D©ø/12) £« (L¡¿¥ð¡¿D©÷/4)
¹øÈ£Dia (m)TL TO TL
Length (m)
Head End to End
Length (m)
1) HEAD
Volume(m)
2) Cylinder
Volume(m)
3) °øĪ¿ë·®
Total Volume(m)
Dia (m)TL TO TL
Length (m)
Head End to End
Length (m)
1) HEAD
Volume(m)
2) Cylinder
Volume(m)
3) °øĪ¿ë·®
Total Volume(m)
Dia (m)TL TO TL
Length (m)
Head End to End
Length (m)
1) HEAD
Volume(m)
2) Cylinder
Volume(m)
3) °øĪ¿ë·®
Total Volume(m)
112.50040.26752.7671022.6544941.4635964.11712.50044.43350.683511.3275452.7905964.11712.50045.45050.175386.5865577.5315964.117
212.60039.43252.0321047.3944916.7235964.11712.60043.63249.932523.6975440.4205964.11712.60044.65649.419395.9385568.1795964.117
312.70038.61551.3151072.5314891.5865964.11712.70042.84849.198536.2655427.8525964.11712.70043.88148.682405.4415558.6765964.117
412.80037.81550.6151098.0664866.0515964.11712.80042.08248.482549.0335415.0845964.11712.80043.12347.961415.0945549.0235964.117
512.90037.03349.9331124.0044840.1135964.11712.90041.33347.783562.0025402.1155964.11712.90042.38247.258424.8985539.2195964.117
613.00036.26749.2671150.3474813.7705964.11713.00040.60047.100575.1735388.9445964.11713.00041.65746.572434.8575529.2605964.117
713.10035.51748.6171177.0984787.0195964.11713.10039.88346.433588.5495375.5685964.11713.10040.94945.901444.9695519.1485964.117
813.20034.78247.9821204.2604759.8575964.11713.20039.18245.782602.1305361.9875964.11713.20040.25645.245455.2375508.8805964.117
913.30034.06347.3631231.8384732.2795964.11713.30038.49645.146615.9195348.1985964.11713.30039.57744.605465.6625498.4555964.117
1013.40033.35846.7581259.8334704.2845964.11713.40037.82444.524629.9175334.2005964.11713.40038.91443.979476.2455487.8725964.117
1113.50032.66746.1671288.2494675.8685964.11713.50037.16743.917644.1255319.9925964.11713.50038.26443.368486.9875477.1305964.117
1213.60031.99045.5901317.0904647.0275964.11713.60036.52343.323658.5455305.5725964.11713.60037.62942.770497.8895466.2285964.117
1313.70031.32645.0261346.3574617.7605964.11713.70035.89242.742673.1795290.9385964.11713.70037.00642.185508.9535455.1645964.117
1413.80030.67544.4751376.0554588.0625964.11713.80035.27542.175688.0285276.0895964.11713.80036.39741.614520.1805443.9375964.117
1513.90030.03643.9361406.1874557.9305964.11713.90034.67041.620703.0935261.0245964.11713.90035.80041.055531.5705432.5475964.117
1614.00029.41043.4101436.7554527.3625964.11714.00034.07741.077718.3785245.7395964.11714.00035.21540.508543.1255420.9925964.117
1714.10028.79642.8961467.7634496.3545964.11714.10033.49640.546733.8825230.2355964.11714.10034.64339.973554.8475409.2705964.117
1814.20028.19342.3931499.2144464.9035964.11714.20032.92740.027749.6075214.5105964.11714.20034.08139.449566.7365397.3815964.117
1914.30027.60241.9021531.1114433.0065964.11714.30032.36839.518765.5565198.5615964.11714.30033.53138.937578.7945385.3235964.117
2014.40027.02141.4211563.4584400.6595964.11714.40031.82139.021781.7295182.3885964.11714.40032.99238.436591.0225373.0955964.117
2114.50026.45140.9511596.2564367.8615964.11714.50031.28438.534798.1285165.9895964.11714.50032.46337.945603.4205360.6975964.117



À¯Æ©ºê º¸±â




	
	var Di  = 2210;
	var Ri  = Di / 2;
	var DLL = 1853;

	var z = 552.5 ; 
	var C = 2 * 552.5 / 2210;
	C	= 0.5;
      
    var V_one_head = Math.pow(Di,3) * C * ( Math.PI / 12) * ( 3 * Math.pow((DLL / Di ),2) - 2 * Math.pow((DLL/Di),3));
	var V_Cylinder = L * ( Ri^2 * Math.acos((Ri-DLL)/Ri) - (Ri - DLL) * Math.sqrt(Di * DLL - Math.pow(DLL,2)));

	var V = V_one_head + V_Cylinder;

	https://stackoverflow.com/questions/2172798/how-to-draw-an-oval-in-html5-canvas	
	There doesnt seem to be a native function to draw an oval-like shape. Also i am not looking for the egg-shape.
	Is it possible to draw an oval with 2 bezier curves? Somebody expierenced with that?
	My purpose is to draw some eyes and actually im just using arcs. Thanks in advance. Solution
	So scale() changes the scaling for all next shapes. Save() saves the settings before and restore is used to restore the settings to draw new shapes without scaling.
	Thanks to Jani
	
	ctx.save();
	ctx.scale(0.75, 1);
	ctx.beginPath();
	ctx.arc(20, 21, 10, 0, Math.PI*2, false);
	ctx.stroke();
	ctx.closePath();
	ctx.restore();

½ÃÀ۽ð£ = [2024-12-05 00:59:19.0607]
Á¾·á½Ã°£ = [2024-12-05 00:59:19.0612]


PRT_IMO_FORMULA_BUNSU() / FUNCTION_MATH.jsp ¿¡ ÀÖÀ½ Ãâó : ASME SHELL THICKNESS CALCULATION Ãâó
 
Wall thickness calculation of Sphere
according ASME
 
     
  Allowable stress S = 175.2 = 175.20 N/mm©÷  
  Corroded thickness tc = t - Ca - tol = 8.2 - 1 - 1.03 = 6.17 mm  
           
  Sphere:        
           
  Corroded inside radius
R =
Do
2
- tc=
219.1
2
- 6.17 =
103.38 mm  
1.Cylinder Shell : £«£­¡¿¡À
Required wall thickness
tr=
P · R
S¡¿E £­ 0.6¡¿P
£« CA
=
0.5 ¡¿ 103.38
2 ¡¿ 175.2 ¡¿ 1.0 £­ 0.2 ¡¿ 0.5
£« CA
0.15 mm 
2.Spherical Head :
Required wall thickness
tr=
P · R
2SE £­ 0.2P
£« CA
=
0.5 ¡¿ 103.38
2 ¡¿ 175.2 ¡¿ 1.0 £­ 0.2 ¡¿ 0.5
£« CA
0.15 mm 
3.2:1 Ellipsoidal Head :
Required wall thickness
tr=
P ⋅ D
2 ⋅ S ⋅ E - 0.2 ⋅ P
+ CA
=
0.5 * 103.38
2 * 175.2 * 1.0 - 0.2 * 0.5
+ CA
0.15 mm 
3.10% Dish Head :
Required wall thickness
tr=
P ⋅ D ⋅ K
2 * S * E - 0.2 * P
+ CA
=
0.5 * 103.38
2 * 175.2 * 1.0 - 0.2 * 0.5
+ CA
0.15 mm 
  Nominal required thickness trn = tr + Ca + tol = 0.148 + 1 + 1.03 = 2.18 mm  
  Max. Allowable Working Press.
MAWP =
2 ⋅S ⋅ E ⋅ tc
R + 0.2 ⋅ tc
=
2 ⋅ 175.2 ⋅ 1 ⋅ 6.17
103.38 + 0.2 ⋅ 6.17
=
20.67 N/mm©÷  
  Thickness analysis, t > trn ? t = 8.2 mm is OK      
           
  Weight     9.00 kg  
  Enclosed volume     0.004 m3  


Ãâó : À̹ÌÁö¸¦ ĵ¹ö½º¿¡ ³ÖÀºÈÄ Äµ¹ö½º À̹ÌÁö¸¦ ·ÎÄ®½ºÆ®¸®Áö¿¡ ÀúÀåÇÏ´Â ¹æ¹ý (¹Ù·Î°¡±â ´©¸£¼¼¿ä)
[¹Ù·Î°¡±â]
Å×½ºÆ® Çϱâ (´©¸£¼¼¿ä)



HTML¿¡¼­ LATEX Math Library ¼ö½Ä Ç¥ÇöÇϱâ https://www.scientificpsychic.com/etc/square-root.html
³×À̹ö ºí·Î±× / HTML¿¡¼­ ¼ö½Ä Ç¥ÇöÇϱâ https://blog.daum.net/asfreeas/18314217
  _______
 X2 + 1 


−b ± √  b2 − 4ac
          2a          

HTML Ư¼ö¹®ÀÚ ¸®½ºÆ®

¥Á ¥á¥á¥ë¥õ¥áAlpha (¾ËÆÄ) Çѱ¹¾î '¾Æ' (¿µ¾î cup ÀÇ u ¶Ç´Â calm ÀÇ a)
¥Â ¥â¥â¥ç¥ó¥áBeta (º£Å¸) ¿µ¾î b
¥Ã ¥ã¥ã¥á¥ì¥ì¥áGamma (°¨¸¶) ¿µ¾î get ÀÇ g
¥Ä ¥ä¥ä¥å¥ë¥ó¥áDelta (µ¨Å¸) ¿µ¾î d
¥Å ¥å¥å¥÷¥é¥ë¥ï¥íEpsilon (¿¦½Ç·Ð) Çѱ¹¾î ªÀº '¿¡' (¿µ¾î bed ÀÇ e)
¥Æ ¥æ¥æ¥å¥ó¥áZeta (Á¦Å¸) ¿µ¾î zd (³ªÁß¿¡ z ·Î ¹Ù²ñ)
¥Ç ¥ç¥ç¥ó¥áEta (¿¡Å¸) Çѱ¹¾î ±ä '¿¡' (¿µ¾î play ÀÇ ay)
¥È ¥è¥è¥ç¥ó¥áTheta (¼¼Å¸) Çѱ¹¾î '¤¼' (³ªÁß¿¡ ¿µ¾î thank ÀÇ th ·Î ¹Ù²ñ)
¥É ¥é¥é¥ø¥ó¥áIota (ÀÌ¿ÀŸ) Çѱ¹¾î 'ÀÌ' (¿µ¾î fit ÀÇ i ¶Ç´Â feet ÀÇ ee)
¥Ê ¥ê¥ê¥á¥ð¥ð¥áKappa (Ä«ÆÄ) Çѱ¹¾î '¤¢' (¿µ¾î k)
¥Ë ¥ë¥ë¥á¥ì¥â¥ä¥áLambda (¶÷´Ù) ¿µ¾î l
¥Ì ¥ì¥ì¥ôMu (¹Â) ¿µ¾î m
¥Í ¥í¥í¥ôNu (´º) ¿µ¾î n
¥Î ¥î¥Î ¥îXi (Å©»çÀÌ) ¿µ¾î box ÀÇ x
¥Ï ¥ï¥ï¥ì¥é¥ê¥ñ¥ï¥íOmicron (¿À¹ÌÅ©·Ð) Çѱ¹¾î '¿À' (¿µ±¹¿µ¾î pot ÀÇ o)
¥Ð ¥ð¥ð¥éPi (ÆÄÀÌ) Çѱ¹¾î '¤³' (¿µ¾î p)
¥Ñ ¥ñ¥ñ¥øRho (·Î¿ì) Çѱ¹¾î '»ç¶û' ÀÇ '¤©' (¿µ¾î r)
¥Ò ¥ò¥ò¥é¥ã¥ì¥áSigma (½Ã±×¸¶) ¿µ¾î sing ÀÇ s
½Ã±×¸¶ÀÇ ¼Ò¹®ÀÚ´Â À§¿Í °°ÀÌ µÎ °¡ÁöÀÔ´Ï´Ù.
ù ¹ø°´Â ´Ü¾î Áß°£¿¡ ¿Ã ¶§ ¾²ÀÌ°í µÎ ¹ø°´Â ´Ü¾î ³¡¿¡ ¿Ã ¶§ ¾²ÀÔ´Ï´Ù.
¥Ó ¥ó¥ó¥á¥ôTau (Ÿ¿ì) ¿µ¾î t (Çѱ¹¾î µÈ¼Ò¸® '¤¨')
¥Ô ¥ô¥ô¥÷¥é¥ë¥ï¥íUpsilon (¿ó½Ç·Ð) ÇÁ¶û½º¾î u (Çѱ¹¾î 'À§' ¿Í ºñ½Á) ¶Ç´Â ¿µ¾î u
¥Õ ¥õ¥õ¥éPhi (ÆÄÀÌ) Çѱ¹¾î '¤½' (³ªÁß¿¡ ¿µ¾î f ·Î ¹Ù²ñ)
¥Ö ¥ö¥ö¥éÄ«ÀÌ (xhi) Çѱ¹¾î '¤»' (³ªÁß¿¡ µ¶ÀϾî Buch ÀÇ ch ·Î ¹Ù²ñ)
¥× ¥÷¥÷¥éÇÁ»çÀÌ (psi) ¿µ¾î ps
¥Ø ¥ø¥ø¥ì¥å¥ã¥áOmega (¿À¸Þ°¡) Çѱ¹¾î '¿À' (¿µ¾î tone ÀÇ o)
¥á ¥é¥á¥ô¿µ¾î high ÀÇ ÀÌÁ߸ðÀ½°ú °°½À´Ï´Ù.
¿µ¾î how ÀÇ ÀÌÁ߸ðÀ½°ú °°½À´Ï´Ù.
¥å ¥é¥å¥ô, ¥ç¥ôÇѱ¹¾î '¿¡' º¸´Ù Á¶±Ý ±ä ¼Ò¸®ÀÔ´Ï´Ù.
Çѱ¹¾î '¿¡' ¿Í '¿ì' ¸¦ °¢°¢ ¹ßÀ½ÇÕ´Ï´Ù.
¥ï ¥é¥ï ¥é¿µ¾î boy ÀÇ ÀÌÁ߸ðÀ½°ú °°½À´Ï´Ù.
¥ï ¥ô¥ï ¥ô¿µ¾î too ÀÇ Àå¸ðÀ½°ú °°½À´Ï´Ù.
¥ô ¥é¥ô ¥é¿µ¾î quit ÀÇ ui ¼Ò¸®¿Í °°½À´Ï´Ù.
¥ã ¥ã¥ã ¥ã¿µ¾î finger ÀÇ ng ¹ßÀ½ÀÔ´Ï´Ù.
´Ù¸¥ ÀÚÀ½µéÀÌ ÀÌÁßÀ¸·Î ³ªÅ¸³ª¸é °¢°¢À» ¹ßÀ½ÇÕ´Ï´Ù.

HTML Ư¼ö¹®ÀÚ ¸®½ºÆ®

Ãâó : http://kor.pe.kr/util/4/charmap2.htm
HTML »ó¿¡¼­ Ư¼ö¹®ÀÚ°¡ Á¦´ë·Î ³ªÅ¸³ªÁö ¾ÊÀ» ¼ö Àֱ⠶§¹®¿¡ ¾Æ·¡ ¹®Àڵ鸦 »ç¿ëÇÕ´Ï´Ù.
Ç¥Çö¹®ÀÚ ¼ýÀÚÇ¥Çö ¹®ÀÚÇ¥Çö ¼³¸í
-&#00;-&#08;-»ç¿ëÇÏÁö ¾ÊÀ½
space&#09;-¼öÆòÅÇ
space&#10;-ÁÙ »ðÀÔ
-&#11;-&#31;-»ç¿ëÇÏÁö ¾ÊÀ½
space&#32;-¿©¹é
!&#33;-´À³¦Ç¥
\"&#34;&quot;µû¿ÈÇ¥
#&#35;-¼ýÀÚ±âÈ£
$&#36;-´Þ·¯
%&#37;-¹éºÐÀ² ±âÈ£
&&#38;&amp;Ampersand
'&#39;-ÀÛÀº µû¿ÈÇ¥
(&#40;-¿ÞÂÊ °ýÈ£
)&#41;-¿À¸¥ÂÊ °ýÈ£
*&#42;-¾Æ½ºÆ®¸¯
+&#43;-´õÇϱ⠱âÈ£
,&#44;-½°Ç¥
-&#45;-Hyphen
.&#46;-¸¶Ä§Ç¥
/&#47;-Solidus (slash)
0 - 9&#48;-&#57;-0ºÎÅÍ 9±îÁö
:&#58;-ÄÝ·Ð
;&#59;-¼¼¹ÌÄÝ·Ð
<&#60;&lt;º¸´Ù ÀÛÀº
=&#61;-µîÈ£
>&#62;&gt;º¸´Ù Å«
?&#63;-¹°À½Ç¥
@&#64;-Commercial at
A - Z&#65;-&#90;-AºÎÅÍ Z±îÁö
[&#91;-¿ÞÂÊ ´ë°ýÈ£
\&#92;-¿ª½½·¡½¬
]&#93;-¿À¸¥ÂÊ ´ë°ýÈ£
^&#94;-Å»ÀÚºÎÈ£
_&#95;-¼öÆò¼±
`&#96;-Acute accent
a - z&#97;-&#122;-aºÎÅÍ z±îÁö
{&#123;-¿ÞÂÊ Áß°ýÈ£
|&#124;-¼öÁ÷¼±
}&#125;-¿À¸¥ÂÊ Áß°ýÈ£
~&#126;-²¿¸®Ç¥
-&#127;-&#159;-»ç¿ëÇÏÁö ¾ÊÀ½
&#160;&nbsp;Non-breaking space
¢®&#161;&iexcl;°Å²Ù·ÎµÈ ´À³¦Ç¥
¡Ë&#162;&cent;¼¾Æ® ±âÈ£
¡Ì&#163;&pound;ÆÄ¿îµå
¢´&#164;&curren;ÇöÀç ȯÀ²
¡Í&#165;&yen;¿£
|&#166;&brvbar;²÷¾îÁø ¼öÁ÷¼±
¡×&#167;&sect;¼½¼Ç ±âÈ£
¡§&#168;&uml;¿ò¶ó¿ìÆ®
¨Ï&#169;&copy;ÀúÀÛ±Ç
¨£&#170;&ordf;Feminine ordinal
¡ì&#171;&laquo;¿ÞÂÊ ²ªÀÎ °ýÈ£
¡þ&#172;&not;ºÎÁ¤
­&#173;&shy;Soft hyphen
?&#174;&reg;µî·Ï»óÇ¥
&hibar;&#175;&macr;Macron accent
¡Æ&#176;&deg;Degree sign
¡¾&#177;&plusmn;Plus or minus
©÷&#178;&sup2;Superscript two
©ø&#179;&sup3;Superscript three
¢¥&#180;&acute;Acute accent
¥ì&#181;&micro;Micro sign (Mu)
¢Ò&#182;&para;¹®´Ü±âÈ£
¡¤&#183;&middot;Middle dot
¢¬&#184;&cedil;Cedilla
©ö&#185;&sup1;Superscript one
¨¬&#186;&ordm;Masculine ordinal
¡í&#187;&raquo;¿À¸¥ÂÊ ²ªÀÎ °ýÈ£
¨ù&#188;&frac14;4ºÐÀÇ 1
¨ö&#189;&frac12;2ºÐÀÇ 1
¨ú&#190;&frac34;4ºÐÀÇ 3
¢¯&#191;&iquest;°Å²Ù·ÎµÈ ¹°À½Ç¥
 &#192;&Agrave;Capital A, grave accent
 &#193;&Aacute;Capital A, acute accent
 &#194;&Acirc; Capital A, circumflex accent
 &#195;&Atilde;Capital A, tilde
 &#196;&Auml;Capital A, dieresis or umlaut mark
 &#197;&Aring;Capital A, ring (Angstrom)
¨¡&#198;&AElig;Capital AE diphthong (ligature)
C&#199;&Ccedil;Capital C, cedilla
E&#200;&Egrave;Capital E, grave accent
E&#201;&Eacute;Capital E, acute accent
E&#202;&Ecirc;Capital E, circumflex accent
E&#203;&Euml;Capital E, dieresis or umlaut mark
I&#204;&Igrave;Capital I, grave accent
I&#205;&Iacute;Capital I, acute accent
I&#206;&Icirc;Capital I, circumflex accent
I&#207;&Iuml;Capital I, dieresis or umlaut mark
¨¢&#208;&ETH;Capital Eth, Icelandic
N&#209;&Ntilde;Capital N, tilde
O&#210;&Ograve;Capital O, grave accent
O&#211;&Oacute;Capital O, acute accent
O&#212;&Ocirc;Capital O, circumflex accent
O&#213;&Otilde;Capital O, tilde
O&#214;&Ouml;Capital O, dieresis or umlaut mark
¡¿&#215;&times;Multiply sign
¨ª&#216;&Oslash;width=130 Capital O, slash
U&#217;&Ugrave;Capital U, grave accent
U&#218;&Uacute;Capital U, acute accent
U&#219;&Ucirc;Capital U, circumflex accent
U&#220;&Uuml;Capital U, dieresis or umlaut mark
Y&#221;&Yacute;Capital Y, acute accent
¨­&#222;&THORN;Capital Thorn, Icelandic
©¬&#223;&szlig;Small sharp s, German (sz ligature)
 &#224;&agrave;Small a, grave accent
 &#225;&aacute;Small a, acute accent
 &#226;&acirc;Small a, circumflex accent
 &#227;&atilde;Small a, tilde
 &#228;&auml;Small a, dieresis or umlaut mark
 &#229;&aring;Small a, ring
©¡&#230;&aelig;Small ae diphthong (ligature)
c&#231;&ccedil;Small c, cedilla
e&#232;&egrave;Small e, grave accent
e&#233;&eacute;Small e, acute accent
e&#234;&ecirc;Small e, circumflex accent
e&#235;&euml;Small e, dieresis or umlaut mark
i&#236;&igrave;Small i, grave accent
i&#237;&iacute;Small i, acute accent
i&#238;&icirc;Small i, circumflex accent
i&#239;&iuml;Small i, dieresis or umlaut mark
©£&#240;&eth;Small eth, Icelandic
n&#241;&ntilde;Small n, tilde
o&#242;&ograve;Small o, grave accent
o&#243;&oacute;Small o, acute accent
o&#244;&ocirc;Small o, circumflex accent
o&#245;&otilde;Small o, tilde
o&#246;&ouml;Small o, dieresis or umlaut mark
¡À&#247;&divide;Division sign
©ª&#248;&oslash;Small o, slash
u&#249;&ugrave;Small u, grave accent
u&#250;&uacute;Small u, acute accent
u&#251;&ucirc;Small u, circumflex accent
u&#252;&uuml;Small u, dieresis or umlaut mark
y&#253;&yacute;Small y, acute accent
©­&#254;&thorn;Small thorn, Icelandic
y&#255;&yuml;Small y, dieresis or umlaut mark

HTML END!!!